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a b s t r a c t

In this work, a contact problem between an elastic body and a deformable obstacle is
numerically studied. The bone remodeling of the material is also taken into account in
the model and the contact is modeled using the normal compliance contact condition.
The variational problem is written as a nonlinear variational equation for the displacement
field, coupled with a first-order ordinary differential equation to describe the physiological
process of bone remodeling. An existence and uniqueness result ofweak solutions is stated.
Then, fully discrete approximations are introduced based on the finite element method to
approximate the spatial variable and an Euler scheme to discretize the time derivatives.
Error estimates are obtained, fromwhich the linear convergence of the algorithm is derived
under suitable regularity conditions. Finally, some 2D numerical results are presented to
demonstrate the behavior of the solution.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A contact problem between an elastic body and a deformable obstacle, including the bone remodeling process, is
numerically studied in this paper. This bone remodelingmodel, derived by Cowin andHegedus (see [1,2] and also the review
paper [3]), is a generalization of the nonlinear elasticity, and it is based on the fact that the living bone is continuously
adapting itself to external stimuli. Since this process has an enormous effect on the overall behavior and health of the entire
body, the ability of these models to predict the bone remodeling is of great importance.

During the past ten years, some papers dealt with mathematical issues of these models as the existence and uniqueness
of weak solutions under some quite strong assumptions (see, e.g., [4,5]), the analysis of an asymptotic rod model (see, for
instance, [6]) or the numerical stability of finite element models (see [7]). Recently, other authors considered the fiber
orientation and studied the energy dissipation associated to the bone remodeling (see, e.g., [8]). This paper extends the
results presented in [9] to the case including contact and it continues the investigation reported in [10]. Here, our aim
is to provide the numerical analysis of a fully discrete algorithm and to perform some 2D numerical simulations which
demonstrate its behavior.

2. Mechanical and variational problems

Let us denote byΩ ⊂ Rd, d = 1, 2, 3, an open bounded domain and let Γ = ∂Ω be its outer surface which is assumed to
be Lipschitz continuous and it is divided into three disjoint parts ΓD, ΓN and ΓC such that meas (ΓD) > 0. Let [0, T ], T > 0,
be the time interval of interest. The body is being acted upon by a volume force of density f , it is clamped on ΓD and surface
tractions with density g act on ΓN . Finally, we assume that the bodymay come in contact with a deformable obstacle on the
boundary part ΓC which is located at a distance s, measured along the outward unit normal vector ν.
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, and denote by e the so-called bone remodeling function, which

measures the change in the volume fraction from a reference configuration.
The body is assumed elastic and, according to [1,2], the constitutive law is then written as σ = (ξ0 + e)C(e)ε(u), where

ξ0 represents the reference volume fraction and C(e) = (Cijkl(e))di,j,k,l=1 is a constitutive function whose properties will be
described below.

Since the contact is assumed with a deformable obstacle, the well-known normal compliance contact condition is
employed (see [11]); that is, the normal stress σν = σν · ν on ΓC is given by−σν = pν(uν − s),where uν = u · ν denotes the
normal displacement in such a way that, when uν > s, the difference uν − s represents the interpenetration of the body’s
asperities into those of the obstacle. The normal compliance function pν is prescribed and satisfies pν(r) = 0 for r ≤ 0, since
then there is no contact. As an example, one may consider pν(r) = µ r+, where µ > 0 represents a deformability constant
(that is, it denotes the stiffness of the obstacle), and r+ = max {0, r}. We also assume that the contact is frictionless, i.e. the
tangential component of the stress field, denoted στ = σν − σνν, vanishes on the contact surface.

Let us represent by · the inner product in Rd and by | · | its corresponding norm. Let Sd be the space of second-order
symmetric tensors on Rd, or equivalently, the space of symmetric matrices of order d, and let: be its inner product and | · |

its norm.
The evolution of the bone remodeling function is obtained from the first-order ordinary differential equation (see [1,2])

ė = a(e) + A(e) : ε(u), where a dot above a variable represents the time derivative, a(e) is a constitutive function and
A(e) = (Aij(e))di,j=1 denote the bone remodeling rate coefficients.

Let us define the truncation operator ΦL : R → [−L, L] by ΦL(r) = r if |r| ≤ L, ΦL(r) = L if r > L and ΦL(r) = −L if
r < −L.

Finally, the process is assumed quasistatic and therefore, the inertia effects are neglected. Moreover, let e0 denote the
initial bone remodeling function.

The mechanical problem, derived from the continuum mechanics laws within the small displacement theory, is the
following (see [2]).

Problem P. Find the displacement field u : Ω × (0, T ) → Rd, the stress field σ : Ω × (0, T ) → Sd and the bone remodeling
function e : Ω × (0, T ) → R such that e(0) = e0 and for a.e. t ∈ (0, T ),

σ(t) = (ξ0 + e(t))C(e(t))ε(u(t)) in Ω,

ė(t) = a(e(t)) + A(e(t)) : ε(u(t)) in Ω,

−Div σ(t) = γ (ξ0 + ΦL(e(t)))f (t) in Ω,

u(t) = 0 on ΓD,

σ(t)ν = g(t) on ΓN ,

στ (t) = 0, σν(t) = −pν(uν(t) − s) on ΓC .

Here, γ > 0 is the density of the full elastic material which is assumed constant for the sake of simplicity.
We turnnow toobtain a variational formulation of ProblemP. First, let us denote byY = L2(Ω) andH = [L2(Ω)]d, andde-

fine the variational spaces V = {v ∈ [H1(Ω)]d ; v = 0 on ΓD} and Q = {τ = (τij)
d
i,j=1 ∈ [L2(Ω)]d×d

; τij = τji, 1 ≤ i, j ≤ d}.
The following assumptions are done on the given data.
The elasticity coefficients Cijkl(e) are assumed to satisfy the following properties:

(a) There exists LC > 0 such that

|(ξ0 + e1)Cijkl(e1) − (ξ0 + e2)Cijkl(e2)| ≤ LC |e1 − e2|, ∀e1, e2 ∈ R.

(b) There existsMC > 0 such that |(ξ0 + e)Cijkl(e)| ≤ MC , ∀e ∈ R.
(c) Cijkl(e) = Cjikl(e) = Cklij(e) for i, j, k, l = 1, . . . , d.
(d) There existsmC > 0 such that

(ξ0 + e)C(e)τ : τ ≥ mC |τ|
2, ∀τ ∈ Sd.

(1)

The normal compliance function pν : ΓC × R −→ R+ verifies:

(a) There exists Lν > 0 such that

|pν(x, r1) − pν(x, r2)| ≤ Lν |r1 − r2| ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .

(b) The mapping x → pν(x, r)is Lebesgue measurable on ΓC , ∀r ∈ R.
(c) (pν(x, r1) − pν(x, r2)) · (r1 − r2) ≥ 0 ∀ r1, r2 ∈ R, a.e. x ∈ ΓC .
(d) The mapping x → pν(x, r) = 0 for all r ≤ 0.

(2)
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