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a b s t r a c t

A low-dispersive dynamic finite difference scheme for Large-Eddy Simulation is developed.
The dynamic scheme is constructed by combining Taylor series expansions on twodifferent
grid resolutions. The scheme is optimized dynamically through the real-time adaption of
a dynamic coefficient according to the spectral content of the flow, such that the global
dispersion error is minimal. In the case of DNS-resolution, the dynamic scheme reduces
to the standard Taylor-based finite difference scheme with formal asymptotic order of
accuracy. When going to LES-resolution, the dynamic scheme seamlessly adapts to a
dispersion-relation preserving scheme. The scheme is tested for Large-Eddy Simulation of
Burgers equation. Very good results are obtained.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The necessity for numerical quality in Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of turbulent
flows, has been recognized by many researchers e.g. Ghosal [1], Kravchenko et al. [2] and Chow et al. [3]. In a fully resolved
DNS, the smallest resolved scales are located far into the dissipation range. Since these scales have only a very small energy-
content in comparison with the largest resolved scales in the flow, they are often considered to have a negligible influence
on the mean flow statistics. In a Large-Eddy Simulation, however, where only the most important large scale structures are
resolved, the smallest resolved scales are part of the inertial subrange and contain relatively more energy than those in the
dissipation range. Hence, the smallest resolved scales in Large-Eddy Simulation are not negligible and have a significant
influence on the evolution of the LES-flow. The accuracy with which these small scales are described is therefore expected
to be important. Moreover, some advanced subgrid modeling techniques such as the dynamic procedure or multiscale
modeling strongly rely on the smallest resolved scales in LES, making their accurate resolution even more important. Good
numerical quality for an affordable LES is thus vital for accurate flow prediction, as it directly influences resolved physics as
well as subgrid modeling.
Aside from aliasing errors, which should be prevented by eliminating scales beyond κc = 2

3κmax, as motivated in [4],
discretization errors aremainly responsible for the loss of numerical accuracy. Since it is highly desirable in LES tomaximize
the ratio between the physical resolution and the grid resolution κc/κmax, in order to lower computational costs, standard
second-order central schemes may not be sufficient. Ghosal [1] and Chow et al. [3] recommend the filter-to-grid cutoff-
ratio to be at most κc

κmax
=

1
4 when using a second-order central scheme. This ensures the magnitude of the discretization

errors are smaller than the magnitude of the modeled force of the subfilter scales, but is prohibitively expensive for most
3D LES computations. Instead, one could apply higher-order discretizations allowing larger filter-to-grid cutoff-ratios.
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However, acceptable dispersion errors up to κc = 2
3κmax, which is the maximum resolution that can be obtained when

using the 2/3-dealiasing procedure, requires at least a standard tenth-order central scheme, or a sixth-order compact Padé
scheme, which inevitably leads to increased complexity and computational costs.
In the present work, we develop a dynamic low-dispersive finite difference scheme for Large-Eddy Simulation. This

scheme is constructed by combining Taylor series expansions on two different grid resolutions similar to Richardson
Extrapolation. A first attempt of this technique has proved successful for obtaining higher accuracy in laminar flows in [5,
6]. Further, we show the agreements of the new dynamic scheme with the dispersion-relation preserving scheme of Tam
et al. [7]. In contrast to their work, the constructed scheme is optimized dynamically during the simulation according to the
flow’s spectral properties and dispersion errors are minimized through the real-time adaption of a dynamic coefficient. In
case of DNS-resolution, the dynamic scheme reduces to the standard finite difference schemewhich has an asymptotic order
of accuracy. However, going to LES-resolution, the dynamic scheme seamlessly adapts to a dispersion-relation preserving
scheme. This could be particularly interesting for transient developing flows, or in case of grid refinement studies with fixed
filter width.

2. Construction of the dynamic finite difference scheme

We start by writing the Taylor series expansion for the nth-order derivative, n = 0, 1, 2, . . ., for a kth-order central
discretization scheme (k = 2, 4, 6, . . .) on two grid resolutions, characterized by grid spacings∆1 = ∆ and∆2 = 2∆

∂nu
∂xn

(x) =
δnu
δxn

∣∣∣∣∆ + ck,n∆k ∂k+nu∂xk+n
+ O
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∆k+2

)
(1)
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u(x) denotes the discrete representation of a continuum physical field u(x) to the discrete grid, while the finite difference
approximation of the partial derivative is denoted as ∂

∂x =
δ
δx . The coefficient ck,n is actually known from the Taylor series

expansion. However, suppose that the leading order truncation terms in (1) and (2) are discretized with a minimal order
O(∆2) and that the Taylor series are truncated to order O(∆k+2). Then it would be possible to obtain a new value of ck,n
by combining (1) and (2). The new ck,n will not necessarily have the same value as the one obtained from identification of
the Taylor series, as it is a function of u(x), and its derivatives. Moreover, we expect the value of ck,n to be optimized with
respect to u(x), such that deficiencies of the finite difference approximation, e.g. dispersion errors are minimized. This will
be explained later. We first proceed by writing the truncated Taylor series with the discretized leading order truncation
terms and we introduce a blending factor f in the second equation
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}
+ O
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To explain the purpose of this blending factor f ∈ [0, 1] we illustrate the cases f = 0 and f 6= 0. Remark that, unless ck,n
has the exact Taylor value, the order of accuracy in both expressions remains O(∆k).

2.1. Asymptotic high-order scheme for f = 0

For f = 0, the coefficient ck,n can be obtained by subtracting the truncated expressions (3) and (4), leading to

δnu
δxn

∣∣∣∣∆ − δnu
δxn

∣∣∣∣2∆ = ck,n (2k − 1)∆k δk+nuδxk+n

∣∣∣∣∆. (5)

Although the left-hand-side and the right-hand-side finite difference approximations do not necessarily have identical
stencils, they represent the same derivative. This relation will be used further in this work for simplifications. Substitution
of (5) into (3), eliminating ck,n, finally leads to the finite difference approximation of order k+ 2
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which is the well-known Richardson’s Extrapolation formula. It should be emphasized that the same result is obtained by
combining (1) and (2) which proves that expression (6) is an approximation with formal asymptotic order of accuracy k+2.
Since the aim is to construct optimized finite difference schemes with good Fourier characteristics, abandoning the concept
of formal asymptotic order of accuracy, obviously f needs to be different from zero.
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