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a b s t r a c t

Computational fluid dynamics (CFD) has become increasingly used in the industry for the
simulation of flows. Nevertheless, the complex configurations of real engineering problems
make the application of very accurate methods that only work on structured grids difficult.
From this point of view, the development of higher-ordermethods for unstructured grids is
desirable. The finite volumemethod can be usedwith unstructured grids, but unfortunately
it is difficult to achieve an order of accuracy higher than two, and the common approach is a
simple extension of the one-dimensional case. The increase of the order of accuracy in finite
volumemethods on general unstructured grids has been limited due to the difficulty in the
evaluation of field derivatives. This problem is overcomewith the application of theMoving
Least Squares (MLS) technique on a finite volume framework. In this work we present the
application of this method (FV-MLS) to the solution of aeroacoustic problems.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The simulation of sound propagation in the air is a very difficult numerical problem [1]. If we try to solve an acoustic
problem with the same methods as developed for aerodynamics, a lot of numerical difficulties arise that are not present
in the resolution of aerodynamic problems. The origin of such difficulties relies on the nature of the acoustic problem. The
low magnitude of acoustic waves makes the use of low dissipation schemes mandatory, and it complicates even more the
problem of the boundary conditions. Thus, the acceptable amplitude of reflections caused by waves leaving the domain
is much smaller than in typical aerodynamic problems. Another feature of aeroacoustic problems is that the range of
frequencies of interest is wider than in aerodynamics.
In computational aeroacoustics (CAA), the most successful numerical schemes have been spectral methods or high-

resolution finite differences [2,3]. These methods work very well on structured grids, but unfortunately they present
problemswhen applied to the resolution of problemswith complex geometries. In this context, the development ofmethods
that can solve CAA problems on unstructured grids is interesting. The finite volume method, widely and successfully used
for the simulation of aerodynamicswith unstructured grids, presents difficulties when it is applied to aeroacoustic problems
in its most usual formulation (at most order two), due to the lack of resolution of the scheme. Even though raising the order
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is not the only (nor probably the best) way to improve the resolution of the schemes, it is the most usual approach on
unstructured grids, due to the difficulty in generalizing the methods developed for structuredmeshes [4]. But this approach
is also not obvious, and the main problem is the evaluation of high-order derivatives. The FV-MLS method [5–7] overcomes
this difficulty by using the Moving Least Squares (MLS) technique [8] to compute the gradients and successive derivatives.
Thus, it builds higher-order schemes in a finite volume framework without the introduction of new degrees of freedom.
The aim of this work is to extend the application of the FV-MLS method to the resolution of aeroacoustic problems, by

focusing our attention on the resolution of the Linearized Euler Equations (LEEs). Moreover, the multiresolution features of
theMLS approach [9] allow the development of low-pass filters that could be used togetherwith a grid-stretching technique
to build an absorbing layer that avoids reflections at the boundaries, following the methodology exposed in [10].

2. Linearized Euler equations

Most aeroacoustic problems are linear, so it is possible to linearize the Euler equations around a (mean) stationary
solution U0 = (ρ0, u0, v0, p0). Then, the 2D LEEs written in conservative form are the following:
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where the velocity is ν = (u, v), ρ is the density, p the pressure, and γ = 1.4. The subscript 0 refers to mean values and ′
indicates perturbation quantities around the mean. In case of a uniform mean flow, H is null.

3. Numerical method

3.1. An MLS-based finite volume scheme

A method based on the application of Moving Least Squares (MLS) to compute the derivatives in a finite volume
framework (FV-MLS) [5,6] has been used to discretize the LEEs (1). Fluxes are discretizedwith a flux vector splittingmethod.
In order to increase the order achieved by themethod, a Taylor expansion of the variable is performed at the interior of each
cell. Next, the approximation of the higher-order derivatives needed to compute the Taylor reconstruction is obtained by
an MLS approach. Thus, if we consider a function Φ(x) defined in a domain Ω , the basic idea of the MLS approach is to
approximateΦ(x), at a given point x, through a weighted least-squares fitting ofΦ(x) in a neighborhood of x as

Φ (x) ≈ Φ̂ (x) =
m∑
i=1

pi (x)αi (z) |z=x = pT (x)α (z) |z=x. (4)

pT(x) is an m-dimensional polynomial basis and α(z)|z=x is a set of parameters to be determined, such that they minimize
the following error functional:

J(α(z)|z=x) =
∫
y∈Ωx

W (z − y, h)|z=x
[
Φ(y)− pT(y)α(z)|z=x

]2
dΩx, (5)

W (z − y, h)|z=x being a kernelwith compact support (denoted byΩx) centered at z = x. The parameter h is the smoothing
length, which is a measure of the size of the supportΩx [5].
In this work the following polynomial cubic basis is used:

p(x) =
(
1 x y xy x2 y2 x2y xy2 x3 y3

)T
, (6)

which provides cubic completeness. In the above expression, (x, y) denotes the Cartesian coordinates of x. In order to
improve the conditioning, the polynomial basis is locally defined and scaled: if the shape functions are evaluated at xI ,
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