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a b s t r a c t

We present a mass conservative numerical scheme for reactive solute transport in porous
media. The transport is modeled by a convection–diffusion–reaction equation, including
equilibrium sorption. The scheme is based on the mixed finite element method (MFEM),
more precisely the lowest-order Raviart–Thomas elements and one-step Euler implicit. The
underlying fluid flow is described by the Richards equation, a possibly degenerate parabolic
equation, which is also discretized by MFEM. This work is a continuation of Radu et al.
(2008) and Radu et al. (2009) [1,2] where the algorithmic aspects of the scheme and the
analysis of the discretization method are presented, respectively. Here we consider the
Newton method for solving the fully discrete nonlinear systems arising on each time step
after discretization. The convergence of the scheme is analyzed. In the casewhen the solute
undergoes equilibrium sorption (of Freundlich type), the problem becomes degenerate
and a regularization step is necessary. We derive sufficient conditions for the quadratic
convergence of the Newton scheme.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The extensive use of chemical substances in industry in the last 100 years enhanced also considerably the number of
possible contaminated sites. There are hundreds of thousands of such places only in the developed countries. Due to this an
active remediation is practically impossible. To decide how dangerous such a site is or can become is a very difficult task.
A reliable and efficient simulation tool for contaminant transport in saturated/unsaturated soil is needed. This includes a
comprehensivemathematicalmodel, mass conservative discretization tools, robust and fast convergentmethods for solving
the nonlinear discrete problems and finally efficient linear solvers.
The diffusive–advective–reactive transport with a delay caused by the sorption on the soil skeleton of a one-component

solute can be mathematically modeled by the equation

∂t(Θ(ψ)c)+ ρb∂tφ(c)−∇ · (D∇c − Qc) = Θ(ψ)r(c) in J ×�, (1)

with c(t, x) denoting the concentration of the solute, D the diffusion–dispersion coefficient, ρb the soil density, φ(·) a
sorption isotherm, ψ(t, x) the pressure, 2(·) the water content, Q(t, x) the water flux and r(·) a reaction term. In this
paper we assume D to be a constant. For the ease of presentation we take D = 1. Further, J = (0, T ] (0 < T < ∞)
is the time interval, whereas � ⊂ Rd(d ≥ 1) is the computational domain having a Lipschitz continuous boundary 0.
Initial c(t = 0) = cI and homogeneous Dirichlet boundary conditions complete the model. We considered for the ease of
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presentation the case of one-component transport, but the present results can be extended to the case of amulti-component
reactive transport, as long as the reactive term r(·) remains Lipschitz continuous. The same holds formore realistic boundary
conditions (but regular enough) and a strictly positive non-constant diffusion coefficient.
For adsorption we consider two situations: Lipschitz continuous isotherms, as well as the commonly used Freundlich

type isotherm

φ(c) = cα, with α ∈ (0, 1]. (2)

In the last case the derivative is singular at c = 0, so φ is not Lipschitz. To apply the Newton method for Freundlich type
isotherms we employ a regularization step.
The water flux Q appearing in (1), as well as the water content2(ψ), are obtained by solving the mass balance equation

for water, which is assumed incompressible

∂t2(ψ)+∇ · Q = 0 (3)

and the Darcy’s law

Q = −K(2(ψ))∇(ψ + z), (4)

together with initial Ψ (t = 0) = ΨI and homogeneous Dirichlet boundary conditions. Combining the Eqs. (3) and (4) one
obtains the Richards equation, which is a typical mathematical model for water flow through saturated/unsaturated soil.
For the coefficient functions 2(·) and K(·) functional dependencies of the pressure are assumed, so that the unknowns in
(3)–(4) are reduced to two.
In [1,2] we have proposed and analyzed a mass conservative scheme for the Eq. (1) based on the MFEM for the spatial

discretization and Euler implicit (EI) for the discretization in time. We have shown (see [2]) that the difference between the
solution of the nonlinear fully discrete problems and the exact solution (which is called in the following the discretization
error) vanishes as the time step and the mesh diameter are approaching zero. The order of convergence naturally depends
on the accuracy of the scheme for the water flow. However, at each time step one has to solve the fully discrete nonlinear
problems resulting after the mixed finite element (MFE) discretization, this being a challenging problem in itself. The
objective of this work is to analyze the applicability of the Newton method for solving these nonlinear systems. Sufficient
explicit conditions for the quadratic convergence of the method are derived.
Most of the papers dealing with numerical schemes for transport equations cope to estimate the discretization error and

assume that the fully discrete nonlinear problems are solved exactly. We mention [3] for a conformal FEM discretization
and [4] for finite volume schemes. Furthermore, a characteristicmixedmethod is studied in [5], upwindMFEM is considered
in [6], whereas combined finite volume mixed hybrid finite elements are employed in [7,8]; see also [9] for a review. In [1,
2] we presented and analyzed an EI-MFE scheme that is based on the lowest-order Raviart–Thomas (RT0) elements for the
Eq. (1). The resulting fully discrete nonlinear problems are commonly solved by different methods: the Newton scheme
(which is locally quadratic convergent), some robust first-order linearization schemes (see [10–12]), or the Jäger–Kačur
scheme [13]. The convergence of the Newton method applied to the system provided by a MFE discretization of an elliptic
problem is studied in [14]. Concerning the systems provided by the MFE discretization of degenerate parabolic equations
we mention [10] for a robust linear scheme and [15] for the Newton method. There, the fast diffusion case is considered,
whereas here we have slow diffusion. Furthermore, the nonlinear term in the cited papers depends only on the solution and
not on time, whereas the convection vector is constant and there is no reaction term.
The paper is structured as follows. The next section provides the continuous problem, the assumptions and presents the

discretization scheme. In the first part of Section 3we define the Newton scheme and prove its convergence. This is done for
the diffusive–convective–reactive solute transport without sorption. We also explain how to include equilibrium, Lipschitz
continuous sorption isotherms. Next we consider equilibrium non-Lipschitz sorption and perform a regularization step. We
show the consistence of the regularization scheme and present the Newton scheme for this case, proving its convergence.
In Section 5 we give some concluding remarks.

2. Euler implicit mixed finite element discretization

Throughout this paperwe use common notations in the functional analysis. By 〈·, ·〉wemean the inner product on L2(�).
Further, ‖·‖ and ‖·‖L4(�) stand for the norms in L

2(�) and L4(�), respectively. The functions inH(div;�) are vector valued,
having a L2 divergence. By C wemean a positive constant, not depending on the unknowns or the discretization parameters
and by Lf the Lipschitz constant of a function f (·). Furthermore, Th is a regular decomposition of � ⊂ Rd into closed d-
simplices; h stands for the mesh diameter. Here we assume� = ∪T∈Th T , hence� is polygonal. Correspondingly, we define
the discrete subspacesWh ⊂ L2(�) and Vh ⊂ H(div;�):

Wh := {p ∈ L2(�)| p is constant on each element T ∈ Th},
Vh := {q ∈ H(div;�)|q|T = a+ bx for all T ∈ Th}.

(5)

In other words, Wh denotes the space of piecewise constant functions, while Vh is the RT0 space (see [16]). For the
discretization in time we let N ∈ N be strictly positive, and define the time step τ = T/N , as well as tn = nτ(n ∈
{1, 2, . . . ,N}).
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