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a b s t r a c t

Dam break flow computation is a task of prime interest in the scope of risk analysis
processes related to dams and reservoirs. In this paper, a 2D finite volume multiblock flow
solver, able to deal with natural topography variation, is presented in detail. The model is
based on an efficient Flux Vector Splitting method developed by the authors. A number of
validation examples are comprehensively described.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Dams and reservoirs are recognized for their valuable contribution to the prosperity and wealth of societies across the
world, while they are also blamed for their risk of failure. Failures of large dams remain fortunately very seldom events.
Nevertheless, a number of occurrences have been recorded in the world, corresponding in average to one to two failures
worldwide every year. Some of those accidents have caused catastrophic consequences, but past experience reveals also that
loss of life and damage can be drastically reduced if Emergency Action Planning (EAP) is implemented in the downstream
valley. The development of EAP is an outcome of a complete risk analysis process, which requires, among other components,
a detailed prediction of the propagation of the flood wave induced by the dam failure.
In this general scope, since practical risk analysis must be applicable for long real valleys at a sufficiently high space

resolution, depth-averaged hydrodynamic models still constitute themost appealing approach [1]. Nevertheless, numerical
modelling of such flows involves numerous challenges to be taken up. First, the flow is characterized by a highly transient
behaviour involving the propagation of stiff fronts. Therefore, a proper upwind numerical scheme is required for the
computation to be stable,while a satisfactory accuracymust be reached in space and time. Secondly, conservation of physical
quantitiesmust be preserved duringwetting and drying of computation cells. Finally, the hydrodynamicmodelmust be able
to deal with flows over natural topographies, which are inherently irregular. The correct computation of momentum and
energy quantities requires a suitable discretization of the source term representing the bottom slope.
Many authors such as Fread [2], Bellos and Sakkas [3], Glaister [4], Fennema and Chaudhry [5] or Alcrudo and al. [6] have

shown early interest in dam break flow numerical computation. Various techniques have been developed to solve the 1D
flow equations, as shown in [7]. In the early nineties, research was conducted at the University of Liege in [8], leading to
a 1D upwind finite element scheme to compute dam break flows on natural topography and to its validation by physical
modelling. The simulation time exceeded oneweek to run on 200 cells. Today, the corresponding 2Dmodel is run in less than
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one day on a 200,000-cell grid. Based on a finite volume scheme, this 2D hydrodynamic model handles multiblock regular
grids and a specific iterative process to simulate wetting and drying of computation cells without mass or momentum error.
Following extensive validation by comparisonwith theoretical, experimental and field data [9,10], this 2Dmodel has proved
its efficiency and reliability for open channel flow computations. In this paper, it is specifically applied to dam break flow
computation.

2. Hydraulic model description

2.1. Mathematical model

The 2D hydraulic model is based on the 2D depth-averaged equations of volume and momentum conservation, namely
the shallow-water equations (SWE). In the standard shallow-water approach, the only assumption states that vertical
velocities are significantly smaller than horizontal ones. As a consequence, the pressure field is found to be almost
hydrostatic everywhere. The large majority of flows occurring in natural valleys, even highly transient, can be reasonably
seen as shallow, except in the vicinity of some singularities (e.g. weirs). Indeed, vertical velocity components remain
generally low compared to velocity components in the horizontal plane and, consequently, flows may be considered as
mainly 2D. Thus, the approach presented in this paper is suitable formany of the problems encountered in rivermanagement
as well as for dam break modelling.
The conservative form of the depth-averaged equations of mass and momentum conservation can be written as follows,

using vector notations:
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where s = [h hu hv]T is the vector of the conservative unknowns. Vectors f and g represent the advective and pressure
fluxes in directions x and y, while fd and gd are the diffusive fluxes:
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S0 and Sf designate respectively the bottom slope and the friction terms:

S0 = −gh [0 ∂zb/∂x ∂zb/∂y]T Sf =
[
0 τbx∆Σ/ρ τby∆Σ/ρ

]T
. (3)

In Eqs. (1)–(3), t represents the time, x and y the space coordinates, h thewater depth, u and v the depth-averaged velocity
components, zb the bottom elevation, g the gravity acceleration, ρ the density of water, τbx and τby the bottom shear stresses,
σx and σy the turbulent normal stresses and τxy the turbulent shear stresses. Consistently with Hervouet [11],

∆Σ =

√
1+ (∂zb/∂x)2 + (∂zb/∂y)2 (4)

reproduces the increased friction area on an irregular (natural) topography [12].

2.2. Friction modelling

The bottom friction is conventionally modelled thanks to an empirical law, such as the Manning formula. The model
enables the definition of a spatially distributed roughness coefficient to represent different land-uses, floodplain vegetations
or sub-grid bed forms . . . Besides, the model provides the additional possibility to reproduce friction along the side walls by
means of a process-oriented formulation [9,12]. The combined effect of bottom and side wall friction is expressed as:

τbx

ρ
= ghu

[√
u2 + v2

n2b
h4/3
+ u

Nx∑
kx=1

4
3
n2W
h1/3∆y

]
τby

ρ
= ghv

√u2 + v2 n2b
h4/3
+ v

Ny∑
ky=1

4
3
n2W
h1/3∆x

 (5)

where the Manning coefficient nb and nw characterize respectively the bottom and the side walls roughness and Nx and
Ny designate the number of edges of the finite volume cell which are in contact with the side wall. Those relations are
particularized for Cartesian grids exploited in the present study.
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