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a b s t r a c t

This study focuses on the analysis of the dynamics of parity automata on Delaunay
triangulations (DTs): a kind of relatively highly connected proximity graphs endowedwith
a very active rule. The inertial effect of memory of past states is fully considered in this
context, whereas other related contexts, such as cellular DT automata, are briefly tackled.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Delaunay triangulation (DT), together with its dual
graph Voronoi diagram, are famous graphs, with hundreds
of application in science and engineering. A Delaunay tri-
angulation of a planar set is a triangulation of the set such
that a circumcircle of any triangle does not contain a point
of the set. In 1980 Toussaint demonstrated that MST ⊆

RNG ⊆ DT [1]. This hierarchy of proximity graphs [2] was
later enriched with GG [3] as follows: NNG ⊆ MST ⊆

RNG ⊆ GG ⊆ DT, where NNG is a nearest neighborhood
graph, MST is a minimum spanning tree, RNG is a relative
neighborhood graph, andGG is a Gabriel graph [4]. Ascend-
ing in the hierarchy from NNG to DT is accompanied by an
increase of connectivity. Thus we can consider DT as an ul-
timate species of proximity graphswith highest connectiv-
ity.

DTs are widely applied in nano-sciences. Main applica-
tion domains are clustering of experimental data, numer-
ical analysis and modeling [5,6], as well as applications in
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atom probe tomography [7]; and, representation of nano-
networks by the triangulation. The latter includes nano-
structure development and self-organization [8], geometry
of nano-networks [9], and study of topological structure of
nano-porous anodic aluminum oxide [10].

A DT is an instance of a highly connected proximity
graph. Proximity graphs, particularly relative neighbor-
hood graphs, are invaluable in simulation transport and
communication networks, both man made and biologi-
cal [11–15]. Thus they could be applied toward studies
of damage propagation in artificial and natural networks,
and also used to develop novel techniques for controlling
space–time dynamics on the networks.

DTs are formal models of Belousov–Zhabotinsky (BZ)
vesicle networks. Regular, or irregular but manually de-
signed, arrangements of vesicles filled with excitable
chemical Belousov–Zhabotinsky reaction mixtures bear
huge computational potential [16–19]. Usually lipid vesi-
cles filledwith BZmixture are of different sizes, they do not
form a hexagonal lattice as a rule. Also the vesicles can be
unstable: a coalescence transforms fine-grained networks
of elementary vesicle-processors into a coarse-grained as-
sembles of non-lattice vesicular structures. When BZ vesi-
cles, quite possibly of different sizes, are aggregated into
an assembly and tightly packed, they are represented by
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a DT. A computation on a DT is implemented in the same
manner as on a regular cellular automaton [20].

The paper is structured as follows. The DT and DT au-
tomata are introduced in Section 2. The effect of major-
ity memory on automata on DT is studied in Section 3,
whereas Section 4 deals with the effects of weightedmem-
ory. Both types of memory are scrutinized when starting
with a single active node in Section 5. DT automaton net-
works with non-parity rules and other contexts are briefly
tackled in Section 6.

2. Automata on DTs

ADT for a set P of N points in the plane is a triangulation
DT(P) such that no point in P is inside the circumcircle
of any triangle in DT(P). The Delaunay triangulation DT(P)
corresponds to the dual graph of the Voronoi diagram for
P, thus the latter is obtained by joining the centers of the
circumcircles in DT(P) defining neighboring triangles [21].
As an example, Table 1 shows a simple DT on four points
and its corresponding Voronoi diagram. The left panel of
Table 1 shows the C3

4 = 4 circumcircles of four points
chosen to be the vertices of an equilateral triangle and
its barycenter, so that the central circle (the circumcircle
of the vertices, which has the barycenter inside) does not
generate any link. In large networks, each vertex of a DT
has on average six surrounding triangles, which implies a
mean connectivity K = 6.

Automata on DTs were originally introduced in [20]
and studied in a context of excitation dynamics. In the
present paper we develop ideas of [20] along the lines of
memory-enriched automata and global dynamics. In the
automata on DTs studied here, each node is characterized
by an internal state whose value belongs to a finite set.
The updating of these states is made simultaneously (à la
cellular automata) according to a common local transition
rule involving only the neighborhood of each node [20].
Thus, if σ

(T )
i is taken to denote the state value of node i

at time step T , the site values evolve by iteration of the
mapping: σ

(T+1)
i = φ


{σ

(T )
j } ∈ Ni


, where Ni is the set

of nodes in the neighborhood of i and φ is an arbitrary
function which specifies the automaton rule. This article
deals with two possible state values at each site: σ ∈

{0, 1}, and the parity rule: σ
(T+1)
i =


j∈Ni

σ
(T )
j mod 2.

Despite its formal simplicity, the parity rule may exhibit
complex behavior [22].

In the Markovian approach just outlined (referred
to as ahistoric), the transition function depends on the
neighborhood configuration of the nodes only at the
preceding time step. Explicit historic memory can be
embedded in the dynamics by featuring every node by
a mapping of its states in the previous time steps. Thus,
what is here proposed is tomaintain the transition function
φ unaltered, but make it act on the nodes featured by a
trait state obtained as a function of their previous states:
σ

(T+1)
i = φ


{s(T )

j } ∈ Nj


, s(T )

j being a state function of the
series of states of the node j up to time-step T .

3. Majority memory

We will consider first the most frequent state (or
majority) memory implementation. Thus, with memory

limited to the last τ time-step state values:

s(T )
i = mode


σ

(T )
i , σ

(T−1)
i , . . . , σ

(⊤)
i


,

with ⊤ = max(1, T − τ + 1).
In the case of equality in the number of time-steps

that a node was 0 and 1, the last state is kept, in which
case memory does not really actuate. This lack of effect
of memory induces a lower effectiveness of even size τ -
memories. That is why only odd size memory length will
be implemented in the evolving figures of this section.

With unlimited trailing memory it is:

s(T )
i = mode


σ

(T )
i , σ

(T−1)
i , . . . , σ

(1)
i


.

Table 2 shows the initial evolving patterns of a simu-
lation of the parity rule on a DT automaton with N = 11
nodes. Red nodes denote node state values equal to one,
black nodes denote zero state values. The effect of endow-
ing nodes with memory of the majority of the last three
states is shown at T = 4. The encircled nodes exemplify
the initial effect of memory: two of them are red at T = 3,
but black as themost frequent state, whereas the other en-
circled node behaves in the opposite manner, thus black at
T = 3, but red as the most frequent state.

Fig. 1 shows the evolution of the changing rate (the
Hamming distance between two consecutive patterns) in
ten different DTs based in one thousand nodes differently
distributed at random in the unit circle. The actual mean
connectivity obtained in the ten networks is K ≃ 5.92.
The red curves correspond to the ahistoric simulations, in
which case the parity rule exhibits a very high level of
changing rate, oscillating around 0.5. Fig. 1 shows also the
effect on the changing rate of endowing nodes with mem-
ory of the last τ state values (blue lines). As a general rule,
the inertial effect of memory tends to reduce the chang-
ing rate compared to the ahistoric model. But in this sce-
nario, with high connectivity, very low memory charges,
e.g., τ = 3 in Fig. 1 or the even size (so less effective) τ = 4
do not have a significant effect on the changing rate. Mem-
ory charges of τ = 5 (or τ = 7) length have a limited ef-
fect, whereas τ = 9, already has an apparent effect. With
higher memory charges, such as τ = 13 or τ = 29 shown
in the lower left panel of Fig. 1, memory reveals its effec-
tiveness in moderating the changing rate, which tends to
vary in the long term by nearly 0.2 and 0.3 respectively,
after an initial almost-oscillatory behavior which ceases by
T > τ + 1, thus T = 14 and T = 30 respectively. With
unlimited trailing memory (lower right panel), this oscilla-
tory pattern is never truncated, so that a rather unexpected
quasi-oscillatory behavior results with full memory. These
oscillatory patterns get a notable amplitude, albeit below
0.5. With no exception, the proportion of node states hav-
ing one given state value (density), oscillates near to 0.5 re-
gardless of the model considered.

Fig. 2 shows the evolution of the damage rate, i.e., the
relative Hamming distance between patterns resulting
from reversing the initial state value of a single node,
referred to as damage (or perturbation) spreading. Fig. 2
operates with the same initial simulations as Fig. 1, thus
a highly connected scenario in which damage propagates
very rapidly without memory (butterfly effect), so that by
T = 25 the red curves already oscillate around 50 percent
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