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a b s t r a c t

The optimal control of unsteady Burgers equation without constraints and with control
constraints are solved using the high-level modelling and simulation package COMSOL
Multiphysics. Using the first-order optimality conditions, projection and semi-smooth
Newton methods are applied for solving the optimality system. The optimality system
is solved numerically using the classical iterative approach by integrating the state
equation forward in time and the adjoint equation backward in time using the gradient
method and considering the optimality system in the space–time cylinder as an elliptic
equation and solving it adaptively. The equivalence of the optimality system to the elliptic
partial differential equation (PDE) is shown by transforming the Burgers equation by the
Cole–Hopf transformation to a linear diffusion type equation. Numerical results obtained
with adaptive and nonadaptive elliptic solvers of COMSOLMultiphysics are presented both
for the unconstrained and the control constrained case.
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1. Introduction

The Burgers equation plays an important role in fluid dynamics as a first approximation to complex diffusion–convection
phenomena. It was used as a simplified model for turbulence and in shock waves. Analysis and numerical approximation
of optimal control problems for the Burgers equation are important for the development of numerical methods for optimal
control of more complicated models in fluid dynamics like Navier–Stokes equations.

Recently, several papers appeared dealing with the optimal control of the Burgers equation. A detailed analysis of
distributed and boundary control of stationary and unsteady Burgers equation and the approximation of the optimality
system with augmented Lagrangian SQP (sequential quadratic programming) method are given in [1]. In [2], the SQP,
primal–dual active set and semi-smooth Newton methods are compared for distributed control problems related with
the stationary Burgers equation with pointwise control constraints. Distributed control problems for the unsteady Burgers
equation with and without control constraints are investigated numerically using SQP methods in [3–5]. Different time
integration methods like the implicit Euler and Crank–Nicolson methods were considered for solving the adjoint equations
arising from the optimal control of the unsteady Burgers equation in [6]. In contrast to linear parabolic control problems,
the optimal control problem for the Burgers equation is a non-convex problem with multiple local minima due to the
nonlinearity of the differential equation. Numerical methods can only compute minima close to the starting points [4].

Parabolic optimal control problems with and without constraints were solved using COMSOL Multiphysics [7–9]. In this
paper, we present numerical results for distributed optimal control of the unsteady Burgers equation without and with
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control constraints.We follow the function based ‘‘first optimize then discretize’’ strategywhich allows us to apply different
optimization techniques for solving the optimality conditions.

For parabolic optimal control problems, the optimality system contains a forward and a backward-in-time equation
coupled by an algebraic equation. The optimality system can be solved by the gradientmethod integrating the state equation
forward in time and the adjoint equation backward in time iteratively. Another approach which appeared recently is to
consider the time as an additional space dimension and solve the elliptic PDE that contains the whole optimality systems
by COMSOL Multiphysics as in [7–9].

The paper is organized as follows. In Section 2, the distributed optimal control problem for the unconstrained Burgers
equation is stated and the optimality system is obtained. In Section 3, we give the gradientmethod for solving the optimality
system and present numerical results obtained by COMSOL Multiphysics. The so-called one-shot approach by transforming
the whole optimality system to an elliptic PDE is given in Section 3. We make use of the Cole–Hopf transformation to
obtain the elliptic equation for the linearized Burgers equation. Numerical results with adaptive and nonadaptive solvers
of COMSOL Multiphysics are given for different mesh sizes. In Section 4, we give the optimality system for the Burgers
equation with pointwise control constraints. For solving the optimality system, the projection method with semi-smooth
Newton method was used. The paper ends with some conclusions in Section 5.

2. Optimality system for the Burgers equations without inequality constraints

We summarize first the existence and uniqueness of solutions of the unsteady Burgers equation following [4,10]. Given
Ω = (0, 1) and T > 0, we define Q = (0, T )×Ω andΣ = (0, T )× ∂Ω . Let H = L2(Ω) and V = H1

0 (Ω) be Hilbert spaces.
We make use of the following Hilbert space:

W (0, T ) = {ϕ ∈ L2(0, T ; V );ϕt ∈ L2(0, T ; V ∗)},

where V ∗ denotes the dual space of V . The inner product in the Hilbert space V is given with the natural inner product in H
as

(ϕ, ψ)V = (ϕ′, ψ ′)H , for ϕ,ψ ∈ V .

The expression ϕ(t) stands for ϕ(t, ·), considered as function inΩ only when t is fixed.
We consider the unsteady viscous Burgers equation

yt + yyx − νyxx = f + bu in Q (1)

with homogeneous Dirichlet boundary conditions

y(t, 0) = 0 onΣ

and with the initial condition

y(0) = y0 inΩ

where f ∈ L2(Q ) is a fixed forcing term, ν =
1
Re > 0 denotes the viscosity parameter and Re is the Reynolds number. The

location and intensity of the controls u ∈ L2(Q ) are expressed by the function b ∈ L∞(Q ). For example bmight be chosen as

bu =


u in Ω̃
0 inΩ \ Ω̃

where Ω̃ is the set of active controls [2,4,1].
For the unsteadyBurgers equation (1)with the corresponding initial andboundary conditions there exists aweak solution

y ∈ W (0, T ) satisfying

⟨yt(t), ϕ⟩V∗,V + ν(yt(t), ϕ)V + (y(t)yx(t), ϕ)H = ((f + bu)(t), ϕ)H

for all ϕ ∈ V , and t ∈ [0, T ], and (y(0), χ)H = (y0, χ) for all χ ∈ H (see [4]).
The distributed control problem for the Burgers equationwithout inequality constraints andwith homogeneousDirichlet

boundary conditions (P) can be stated as follows [1]:

min J(y, u) =
1
2
‖y − yd‖2

Q +
α

2
‖u‖2

Q

s.t. yt + yyx − νyxx = f + bu in Q ,
y = 0 onΣ,
y(0) = y0 inΩ,

(2)

with the regularization parameter α > 0. Here, y and u denote the state and control variables, yd is the desired state.
In order to show the existence of the optimal solutions, the operator e : X → Y (see pp. 130 [10]) was introduced by

e(y, u) = (e1(y, u), e2(y, u)) = (yt − νyxx + yyx − f − bu, y(0)− y0),
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