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a b s t r a c t

This paper deals with a stencil-based implementation of a geometric multigrid method
on semi-structured triangular grids (triangulations obtained by regular refinement of
an irregular coarse triangulation) for linear finite element methods. An efficient and
elegant procedure to construct these stencils using a reference stencil associated to a
canonical hexagon is proposed. Local Fourier Analysis (LFA) is applied to obtain asymptotic
convergence estimates. Numerical experiments are presented to illustrate the efficiency of
this geometric multigrid algorithm, which is based on a three-color smoother.
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1. Introduction

Multigridmethods [1–3] are among themost efficient numerical algorithms for solving the large algebraic linear equation
systems arising from discretizations of partial differential equations. In geometric multigrids, a hierarchy of grids must be
proposed. For an irregular domain, it is very common to apply a refinement process to an unstructured input grid, such as
Bank’s algorithm, used in the codes PLTMG [4] and KASKADE [5], obtaining a particular hierarchy of globally unstructured
grids suitable for use with a geometric multigrid. A simpler approach to generating the nested grids consists in carrying out
several steps of repeated regular refinement, for example by dividing each triangle into four congruent triangles [6].
An important step in the analysis of PDE problems using finite element methods (FEM) is the construction of the large

sparse matrix A corresponding to the system of equations to be solved. The standard algorithm for computing matrix A is
known as assembly: This matrix is computed by iterating over the elements of the mesh and adding from each element of
the triangulation the local contribution to the global matrix A. For discretizations of problems defined on structured grids
with constant coefficients, explicit assembly of the global matrix for the finite element method is not necessary, and the
discrete operator can be implemented using stencil-based operations. For the previously described hierarchical grid, one
stencil suffices to represent the discrete operator at nodes inside a triangle of the coarsest grid, and standard assembly
process is only used on the coarsest grid. Therefore, this technique is used in this paper since it can be very efficient and is
not subject to the same memory limitations as unstructured grid representation.
LFA (also called local mode analysis [7]) is a powerful tool for the quantitative analysis and design of efficient multigrid

methods for general problems on rectangular grids. Recently, a generalization to structured triangular grids, which is based
on an expression of the Fourier transform in new coordinate systems in space and frequency variables, has been proposed
in [8]. In that paper some smoothers (Jacobi, Gauss–Seidel, three-color and block-line) have been analyzed and compared
by LFA; the three-color smoother turning out to be the best choice for almost equilateral triangles.
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Fig. 1. Numeration of the nodes for one and two refinement levels.

In this paper an efficient implementation of geometric multigrid methods on semi-structured grids for linear finite
element methods is described using a reaction–diffusion problem as a model. In Section 2, a suitable data structure is
introduced; after that, we describe the discrete operator in a stencil-based form, and a procedure using a canonical stencil
associated to a reference hexagon is proposed. The different components of the multigrid algorithm are also given. In
Section 3, an LFA is applied to determine the efficiency of the proposed multigrid method from the convergence factors
provided by the two-grid analysis. Finally, in Section 4 two numerical experiments illustrate the good performance of the
method for an H-shaped domain, and it is shown that the ideas developed in this paper can be extended to systems of
equations.

2. Description of the algorithm

The main features of this algorithm are described in this section. In the first place, we will consider a particular
triangulation of the domain consisting in a semi-structured grid obtained by local regular refinement of an input
unstructured grid. The semi-structured character of the grid allows use of low cost memory storage of the discrete operator
based on stencil form. Such storage permits simpler implementation of the geometric multigrid method. The different
multigrid components are described in the last subsection paying special attention to the relaxation process.

2.1. Semi-structured grids

Let T0 be a coarse triangulation of a bounded open polygonal domain Ω of R2, satisfying the usual admissibility
assumption, i.e. the intersection of two different elements is either empty, a vertex, or a whole edge. This triangulation
is assumed to be rough enough in order to fit the geometry of the domain. Once the coarse triangulation is given, each
triangle is divided into four congruent triangles connecting the midpoints of their edges, and this is repeated until a mesh
Tl is obtained with the desired fine scale to approximate the solution of the problem. This strategy generates a hierarchy
of conforming meshes, T0 ⊂ T1 ⊂ · · · ⊂ Tl, where transfer operators between two consecutive grids can be defined
geometrically.
As the number of neighbors of the vertices of the coarsest grid T0 is not fixed, the corresponding unknowns must be

treated as unstructured data. Thus, two different types of data structure must be used, one of them totally unstructured,
whereas the other is a hierarchical structure. For a refinement level i of a triangle of the coarsest grid, a local numeration
with double index (n,m), n = 1, . . . , 2i + 1, m = 1, . . . , n, is used in such a way that the indices of its vertices are (1, 1),
(2i + 1, 1), (2i + 1, 2i + 1), as we can observe in Fig. 1 for one and two refinement levels. This way of numbering nodes is
very convenient for identifying the neighboring nodes, which is crucial in performing the geometric multigrid method.
Due to the fact that the multigrid method uses a blockwise structure, there are several points in the algorithm, such

as relaxation and residual calculation, where information from neighboring triangles must be transferred. To facilitate this
communication, each triangle of the coarsest grid is augmented by an overlap-layer of so-called ghost nodes that surround
it. To bemore precise, each triangle receives the data corresponding to its own overlap region from its neighboring triangles
of the coarsest grid (see Fig. 2b). The width of this overlap region is mainly determined by the extent of the stencil operators
involved; in this case we use an overlap of one grid point (see Fig. 2a).

2.2. A stencil-based finite element implementation

Let us consider the model problem
−∆u+ u = f , inΩ, u = 0, on Γ , (1)

whereΩ ⊂ R2 is a bounded domain with boundary Γ and, for simplicity of presentation, homogeneous Dirichlet boundary
conditions are imposed. Let Th be a triangulation in the hierarchy of conforming meshes T0 ⊂ T1 ⊂ · · · ⊂ Tl, defined in the
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