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a b s t r a c t

Almost all, regular or singular, Sturm–Liouville eigenvalue problems in the Schrödinger
form

−Ψ ′′(x)+ V (x)Ψ (x) = EΨ (x), x ∈ (ā, b̄) ⊆ R, Ψ (x) ∈ L2(ā, b̄)

for a wide class of potentials V (x)may be transformed into the form

σ(ξ)y′′ + τ(ξ)y′ + Q (ξ)y = −λy, ξ ∈ (a, b) ⊆ R

by means of intelligent transformations on both dependent and independent variables,
where σ(ξ) and τ(ξ) are polynomials of degrees at most 2 and 1, respectively, and λ
is a parameter. The last form is closely related to the equation of the hypergeometric
type (EHT), in which Q (ξ) is identically zero. It will be called here the equation of
hypergeometric type with a perturbation (EHTP). The function Q (ξ) may, therefore, be
regarded as a perturbation. It iswell known that the EHThas polynomial solutions of degree
n for specific values of the parameter λ, i.e. λ := λ

(0)
n = −n[τ ′ + 1

2 (n − 1)σ
′′
], which

form a basis for the Hilbert space L2(a, b) of square integrable functions. Pseudospectral
methods based on this natural expansion basis are constructed to approximate the
eigenvalues of EHTP, and hence the energies E of the original Schrödinger equation.
Specimen computations are performed to support the convergence numerically.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There has been a constant interest in the numerical solution of Sturm–Liouville eigenvalue problems, especially the
one-dimensional Schrödinger equation described by the Hamiltonian

H = −
d2

dx2
+ V (x), x ∈ (ā, b̄), −∞ ≤ ā < b̄ ≤ ∞ (1)

for a variety of quantum mechanical potentials V (x). Several approximation methods have been proposed for computing
the eigenvalues of the problem by numerous researchers. Among these we may recall shooting methods [1], Prüfer
transformation followed by a shooting procedure [2,3], constant perturbationmethods [4,5], finite differencemethods [6,7],
variational methods [8–10], the Wronskian approach [11], the Hill determinant method [12–14], WKB and JWKB
approximations [15–20], the recursive series method [21], the path-integral approach [22] and pseudospectral methods
such as the quadrature discretization method [23,24] and pseudospectral methods based on classical orthogonal
polynomials [25–27].
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The so-called Liouville’s transformations reduce the classical Sturm–Liouville eigenvalue problems to the Schrödinger
form. In general, because of its simple structure, authorswould rather approximate the Sturm–Liouville eigenvalue problems
in the Schrödinger form. However, in contrast, Taşeli and Alıcı [25] transformed the Schrödinger equation over the real line

HΨ (x) = EΨ (x), x ∈ (−∞,∞), Ψ ∈ L2(−∞,∞) (2)

into a more complicated but beneficial form

y′′ − 2ξy′ +
[
ξ 2 − c−2V

(
c−1ξ

)]
y =

[
1− c−2E

]
y, ξ ∈ (−∞,∞) (3)

having a regular solution y(ξ) in the new independent variable ξ . Furthermore, for a symmetric potential V (x) := v(x2),
they showed that another pair of special transformations lead to two similar equations

ξy′′ + (γ + 1− ξ)y′ +
1
4

[
ξ − c−2v(c−2ξ)

]
y =

1
4

[
2(γ + 1)− c−2E

]
y, ξ ∈ (0,∞) (4)

on the half-line for the treatment of even (γ = −1/2) and odd (γ = 1/2) states of (2), separately [26]. Here c appears to
be a scaling parameter. One, with a closer look, can easily see that (3) and (4) resemble Hermite

y′′ − 2ξy′ = −2ny, n ∈ N (5)

and Laguerre

ξy′′ + (γ + 1− ξ)y′ = −ny, γ > −1, n ∈ N (6)

equations, respectively, especially when the modified potentials ξ 2 − c−2V
(
c−1ξ

)
and 14

[
ξ − c−2v(c−2ξ)

]
are viewed as

perturbations on the zero potential. Thus, they conclude that the Hermite basis {Hn(ξ)} for a general potential and the
Laguerre basis {Lγn (ξ)} with γ = ±1/2 for a symmetric potential are the most appropriate choices for a pseudospectral
approximation of (2).
In this article, we generalize this idea to the Schrödinger equation defined over an arbitrary subset of the real line. To this

end, we consider instead of specific cases such as (5) and (6) the unperturbed case as the general EHT

σ(ξ)y′′ + τ(ξ)y′ = −λ(0)y, ξ ∈ (a, b) ⊆ R (7)

leading not only to the Hermite and Laguerre but also the Jacobi polynomials as well. Therefore, in Section 2, we show that
besides (2), certain eigenvalue problems of physical and practical interest can indeed be reduced to the form

σ(ξ)y′′ + τ(ξ)y′ + Q (ξ)y = −λy, ξ ∈ (a, b) ⊆ R (8)

which we have called the EHTP. Clearly, (3) and (4) are now particular cases of (8) in this setting. In Section 3, we then
construct a very general pseudospectral formulation of the EHTP based on any polynomial solutions of the EHT including
every possible selection of σ(ξ) and τ(ξ). Section 4 is concerned with the construction of a general algorithm to determine
the zeros of classical orthogonal polynomials. The last section concludes the paper with numerical examples and remarks.

2. Transformation into EHTP

Excluding a few degenerate cases such as that of quadratic σ with a double root, any EHT can be transformed into a
Hermite (5), Laguerre (6) or Jacobi

(1− ξ 2)y′′ + [β − α − (α + β + 2)ξ ]y′ = −n(n+ α + β + 1)y, α, β > −1, n ∈ N (9)

differential equation by simple scaling and shifting operations; these are called the canonical forms [28]. Accordingly, Eq. (8)
with σ(ξ) = 1, ξ and 1− ξ 2 will be called here the EHTP of the first, second and the third kind, respectively. Therefore, the
associated unperturbed cases, that is, EHTs in (5), (6) and (9), admit the classical orthogonal polynomials as their solutions,
i.e. the Hermite polynomials Hn(ξ), Laguerre polynomials L

γ
n (ξ) of order γ and the Jacobi polynomials P

(α,β)
n (ξ) of order α

and β , corresponding to the three kinds of problems.
We deal with, as a first example of the second kind, the radial Schrödinger equation[
−
d2

dr2
−
M − 1
r

d
dr
+
`(`+M − 2)

r2
+ V (r)

]
R(r) = ER(r), r ∈ (0,∞), (10)

which is naturally defined over the half-line so thatR(r) ∈ L2(0,∞). Here, M = 1, 2, . . . and ` = 0, 1, . . . are the space
dimension and angular quantum number, respectively, and V (r) is an arbitrary potential regular at the origin. Note that the
Hamiltonian in (1), when considered over the half-line, is the particular case of (10) with M = 1 and ` = 0 or ` = 1. First
introducing the scaled quadratic variable

ξ = (cr)2, c > 0, ξ ∈ (0,∞) (11)
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