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a b s t r a c t

We study some properties of block-circulant preconditioners for high-order compact
approximations of convection–diffusion problems. For two-dimensional problems, the
approximation gives rise to a nine-point discretisation matrix and in three dimensions,
we obtain a nineteen-point matrix. We derive analytical expressions for the eigenvalues
of the block-circulant preconditioner and this allows us to establish the invertibility of the
preconditioner in both two and three dimensions. The eigenspectra of the preconditioned
matrix in the two-dimensional case is described for different test cases. Our numerical
results indicate that the block-circulant preconditioning leads to significant reduction
in iteration counts and comparisons between the high-order compact and upwind
discretisations are carried out. For the unpreconditioned systems, we observe fewer
iteration counts for the HOC discretisation but for the preconditioned systems, we find
similar iteration counts for both finite difference approximations of constant-coefficient
two-dimensional convection–diffusion problems.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

We consider block-circulant preconditioners for linear systems arising from high-order compact (HOC) discretisations
of the steady-state convection–diffusion problem

− ε1u(x)+w(x) ·∇u(x) = f (x), (1)

in a domain Ω ⊂ Rd (d = 2, 3) with Dirichlet boundary conditions u(x) = g(x) on ∂Ω . In (1), ε > 0 is the diffusivity
parameter, w is the convective velocity field and f (x) is the source term. In the convection-dominated case (‖w‖ � ε),
the solution has steep gradients or exhibits interior layers in some parts of the domain Ω . When these are due to the
Dirichlet boundary conditions on the outflow boundaries, the numerical solutions arising from standard finite difference
(central difference scheme) or finite element (Galerkin scheme) discretisations exhibit non-physical oscillations. In order to
produce stable discrete solutions, a modification of the Galerkin scheme is the SUPG (streamline upwind Petrov–Galerkin)
scheme of [1] which stabilizes the discrete variational formulation through the addition of consistent terms proportional to
the residual of the discrete solution on each element.
In the context of finite difference discretisations, one way to avoid the phenomenon of instability is to use an upwind

discretisation for the first-order derivative. However, the upwind scheme is only first-order accurate and therefore the
solutions of large linear systems are required to obtain sufficiently accurate numerical solutions.
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A suitable alternative to the upwind scheme for problems in two dimensions is the high-order compact discretisation
introduced in [2]. This nine-point scheme has been shown to produce numerical solutions with high accuracy when the
cell-Reynolds number is not too large. Similar schemes ofO(h4) accuracy for Navier–Stokes equations have been developed
in [3,4] and these schemes have been shown to yield highly accurate numerical solutions.
For three-dimensional problems, a different mechanism for deriving a nineteen-point high-order compact scheme was

described in [5]. An interesting property for both the nine and nineteen-point schemes are that they have been observed to
yield non-oscillatory discrete solutions for various test problems even in the convection-dominated case. For grid-aligned
flows, this non-oscillatory property has been theoretically established in [6] for the two-dimensional case and in [7] for a
three-dimensional problem.
The study of iterative solution methods for HOC linear systems arising from two-dimensional problems has revealed

some interesting properties of the nine-point scheme. The unconditional stability of this scheme with the Jacobi relaxation
scheme has resulted in the development of efficient multigrid techniques [8]. An analysis of the stability of incomplete
factorisations for a problemwith grid-aligned constant flow carried out in [9] has shown that contrary to the case of central
difference approximations where the performance of ILU-preconditioned iterations are adversely affected by unstable
triangular solves in the convection-dominated case, such problems are not observed for the high-order scheme.
The performance of preconditioners based on incomplete factorisations and sparse approximate inverses for solving

linear systems arising from HOC approximations of two-dimensional problems has been studied in [10]. In this present
work, we consider block-circulant preconditioning of the HOC linear systems. The invertibility of the preconditioners are
established andwe then give an experimental study of the eigenspectra of the preconditionedmatrix in the two-dimensional
case. A brief outline is described next.
In Section 3, we recall some properties of circulant matrices and in Section 2, we give the discretisationmatrices for grid-

aligned flow problems in two and three dimensions andwe give analytical expressions for their eigenvalues. In Section 4we
analyze a block-circulant preconditioner for the two-dimensional case and we prove that the preconditioner is invertible.
In Section 5, a similar analysis is carried out for the three-dimensional case. Numerical results on the performance of the
block-circulant preconditioner for the iterative solution of HOC linear systems are given in Section 6.
In the rest of the paper, ej denotes the jth canonical basis vector, I denotes the identity matrix, C ⊗ L is the Kronecker

product of matrices C and L and depending on the dimension d, the discretisation matrix of order N = nd will be denoted
by A.

2. High-order compact schemes

We consider problems when the flow is constant and aligned with the grid onΩ = (0, 1)d. We thus assume that in (1),
ε = 1 and that the velocity field is given byw = (τ , 0) for d = 2 andw = (τ , 0, 0)when d = 3.
Using a columnwise ordering of the grid unknowns on a mesh with spacing h = 1/(n+ 1) in each direction, and letting

γ = τh/2 denote the cell-Reynolds number, the HOC system matrix Awhen d = 2 has the structure
A = blocktridiag [L, K , M] , (2)

where L, K andM are the n× n tridiagonal matrices given by
L = tridiag

[
−(1+ γ ), −(4+ 4γ + 2γ 2), −(1+ γ )

]
,

K = tridiag
[
−4, 20+ 4γ 2, −4

]
,

M = tridiag
[
−(1− γ ), −(4− 4γ + 2γ 2), −(1− γ )

]
.

Since L, K and M are symmetric tridiagonal matrices, they all have the same eigenvector matrix V =
(
vij
)
1≤i, j≤n with

vij = sin ijπh. This result leads to the following analytical expressions for the eigenvalues
(
θjk
)
1≤j,k≤n of the matrix A in

(2) [6]

θjk = λ
(K)
j + 2

√
λ
(L)
j λ

(M)
j cos kπh,

where the eigenvalues λ(L)j , λ
(K)
j and λ(M)j of the matrices L, K andM for j = 1, 2, . . . , n are respectively given by

λ
(L)
j = −2

(
1+ (γ + 1)2

)
− 2(1+ γ ) cos jπh,

λ
(K)
j = 20+ 4γ

2
− 8 cos jπh, (3)

λ
(M)
j = −2

(
1+ (γ − 1)2

)
− 2(1− γ ) cos jπh.

Using (3) it then follows that the n2 eigenvalues of the system matrix A arising from the grid-aligned flow problem can be
written in the form

θjk = 20+ 4γ 2 − 8 cos jπh+ 4 cos kπh
√
4+ γ 4 +

(
4− 2γ 2

)
cos jπh+

(
1− γ 2

)
cos2 jπh, 1 ≤ j, k ≤ n. (4)

In [6], it is proved that the eigenvalues θjk are positive for all values of the cell-Reynolds number γ .
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