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a b s t r a c t

The generalized equal width (GEW) equation is solved numerically by the Petrov–Galerkin
method using a linear hat function as the test function and a quadratic B-spline function as
the trial function. Product approximation has been used in this method. A linear stability
analysis of the scheme shows it to be conditionally stable. Test problems including the
single soliton and the interaction of solitons are used to validate the suggested method,
which is found to be accurate and efficient. Finally, the Maxwellian initial condition pulse
is studied.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The equal width (EW) equation of the form

ut + εuux − δuxxt = 0 (1)

where ε and δ are positive constants and the subscripts x and t denote space and time derivatives respectively is a model
nonlinear partial differential equation used for the simulation of one-dimensional nonlinearwaves propagating in dispersive
media. Peregrine [1] was the first to derive the regularized long wave (RLW) equation for modeling the development of an
undular bore. Later on, Benjamin et al. [2] proposed the use of the RLW equation as preferred alternative over the more
classical Korteweg–de Vries (KdV) equation for modeling a large class of physical phenomena. The EW equation which is
lesswell known andwas proposed in [3] is a description alternative to themore usual KdV and RLWequations. The solutions
of this equation are kinds of solitary waves known as solitons whose shapes are not affected by collision. The EW equation
was solved numerically by various methods such as the Galerkin [4–6], least squares [7], and collocation methods [8,9] etc.
Indeed, the EW equation is a special case of the generalized equal width (GEW) equation of the form

ut + εupux − δuxxt = 0 (2)

where p is a positive integer. It is the model equation governing the wave phenomena in which the long wave incorporates
the competing effects of nonlinearity and dispersion. In fluid problems, u is related to the vertical displacement of the water
surface, whereas in the plasma applications u is the negative of the electrostatic potential [10].

The GEWequationwas studied in [10,11] by applying the collocationmethodwith the use of quadratic and cubic B-spline
functions. Comparatively little work has been done for this case. In this work, the Petrov–Galerkin method is developed for
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the GEW equation using a linear hat function as the test function and a quadratic B-spline as the trial function. Here the
proposed method is shown to represent accurately the migration of single solitary waves for the cases p = 2, 3 and 4. The
interaction of solitary waves and other properties are also studied.

2. The Petrov–Galerkin method (PGM)

For convenience, the GEW equation (2) is rewritten in the form

ut +
ε

p + 1
(up+1)x − δuxxt = 0. (3)

Periodic boundary conditions on the region a ≤ x ≤ b are assumed in the form
u(a, t) = u(b, t) = 0. (4)

The space interval a ≤ x ≤ b is discretized with (N + 1) uniform grid points xj = a + jh, where j = 0, 1, 2, . . . ,N , and
the grid spacing is given by h = (b − a)/N . Let Uj(t) denote the approximation to the exact solution u(xj, t). Following the
method used in [12] for solving the KdV equation, by the Petrov–Galerkin method we modify the method in order to solve
Eq. (3). Using the Petrov–Galerkin method, we assume that the approximate solution of Eq. (3) is

uh(x, t) =

N−
j=0

Uj(t)φj(x). (5)

The product approximation technique [13] is used for treating the nonlinear term in the following manner:

up+1
h (x, t) =

N−
j=0

Up+1
j (t)φj(x) (6)

where φj(x), j = 0, 1, 2, . . . ,N , are the usual piecewise linear ‘‘hat’’ functions given by

φj(x) =

1 + (x − jh)/h, x ∈ [xj−1, xj]
1 − (x − jh)/h, x ∈ [xj, xj+1]

0, otherwise.
The unknown functions Uj(t), j = 0, 1, 2, . . . ,N , are determined from the variational formulation

(uh)t , ψj

+

ε

p + 1


(up+1

h )x, ψj


− δ


(uh)xxt , ψj


= 0 (7)

where ψj, j = 0, 1, 2, . . . ,N , are test functions, which are taken to be quadratic B-splines given by

ψj(x) =
1
h2


(x − xj−1)

2, xj−1 ≤ x ≤ xj
2h2

− (xj+1 − x)2 − (x − xj)2, xj ≤ x ≤ xj+1

(xj+2 − x)2, xj+1 ≤ x ≤ xj+2
0, otherwise

and (, ) denotes the usual inner product:

(f , g) =

∫ b

a
f (x)g(x)dx.

Integrating by parts and using the fact that ψ(a) = ψ(b) = 0, Eq. (7) leads to the formulation
(uh)t , ψj


+

ε

p + 1


(up+1

h )x, ψj


+ δ


(uh)xt , (ψj)x


= 0. (8)

Performing the integrations on (8) will give the following system of ordinary differential equations (ODEs):

αU̇j−1 + βU̇j + βU̇j+1 + αU̇j+2 =
2ε

9(p + 1)h


(Uj−1)

p+1
+ 3(Uj)

p+1
− 3(Uj+1)

p+1
− (Uj+2)

p+1 (9)

where α =
1
18


1 −

12δ
h2


, β =

1
18


11 +

12δ
h2


and ‘·’ means the derivative with respect to time t .

Now to solve the ODEs, we assume Un
j to be a fully discrete approximation to the exact solution u(xj, tn), where tn = n1t

and1t is the time step size. Using the central difference scheme for the time derivative, U̇ =
Un+1

−Un−1

21t , Eq. (9) is reduced
to the system of equations

αUn+1
j−1 + βUn+1

j + βUn+1
j+1 + αUn+1

j+2 = αUn−1
j−1 + βUn−1

j + βUn−1
j+1 + αUn−1

j+2

+
41tε

9(p + 1)h


(Un

j−1)
p+1

+ 3(Un
j )

p+1
− 3(Un

j+1)
p+1

− (Un
j+2)

p+1 (10)

where j = 1, 2, 3, . . . ,N − 2 and n = 1, 2, 3, . . . .
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