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a b s t r a c t

In this paper for the approximate solution of stochastic partial differential equations
(SPDEs) of Itô-type, the stability and application of a class of finite difference method
with regard to the coefficients in the equations is analyzed. The finite difference methods
discussed here will be either explicit or implicit and a comparison between them will be
reported. We prove the consistency and stability of these methods and investigate the
influence of the multiplier (particularly multiplier of the random noise) in mean square
stability. From stochastic version of Lax–Richtmyer the convergence of these methods
under some conditions are established. Numerical experiments are included to show the
efficiency of the methods.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, a great deal of concern has been raised regarding the study of stochastic partial differential equations as
an important area of research. Many phenomena in science and engineering that may have been modeled by deterministic
partial differential equations, have some uncertainty, due to the existence of different stochastic perturbations. Therefore
to represent a more accurate detail of behavior of such phenomena they usually should be modeled by SPDEs. SPDEs have
many applications in continuum physics [1,2], finance, for example for contingent claim, bond pricing problem, interest rate
of option and forward caps [3–6]. SPDEs have been studied theoretically in [7–10]. Several authors investigated numerical
solutions of stochastic PDEs. Some authors used finite element approximation, e.g, [11,12]. Some others like Gyöngy, Gaines,
Davie [13–15], used finite difference methods. They approximate quasi-linear parabolic SPDEs by substituting the space
variable derivative, and obtain some results on the convergence of the resulting difference equations. Yoo presents the
semi-discretization of SPDEs by finite difference methods, and analyzes the sup-norm error and the rate of convergence
of the approximation method [16]. Roth used an explicit finite difference method to approximate the solutions of some
stochastic hyperbolic equations [17,18]. In this paper we use an explicit and also an implicit finite differencemethod to fully
discretize the following SPDE to investigate the effect of coefficients in the convergence and stability of the approximate
solution

ut(x, t)+ auxx(x, t)+ bux(x, t)+ cu(x, t)+ (dux(x, t)+ γ u(x, t))Ẇ (t) = 0 (1.1)

where Ẇ (t) is a random process which is related to the Brownian motionW (t)where Ẇ (t) = ∂W
∂t (t).
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We know that this is not an ordinary derivative. This is a distributional derivative because Brownian motion is nowhere
differentiable. Random processW (t) is Gaussian with zero mean. This equation can be read as

u(x, t)− u(x, 0)+
∫ t

0
(auxx(x, s)+ bux(x, s)+ cu(x, s))ds+

∫ t

0
(dux(x, s)+ γ u(x, s))dW (s) = 0,

where a, b, c, d, γ are constants. The stochastic integral is the Itô-Integral with respect to R1-valued Wiener process
(W (t), Ft)t∈[0,T ] defined on a complete probability space (Ω, F , P), adapted to the standard filtration (Ft)t∈[0,T ]. Different
values of the coefficients of the above equation correspond to different applications. For example, the case a = 1, b = c = 0,
represents a parabolic stochastic heat equation with many applications in engineering, a = 0 corresponds to a hyperbolic
stochastic equation with applications in finance mathematics, say, interest rate of options [17]. We investigate consistency
and stability of two proposed finite difference methods for SPDE (1.1) in a more general sense. The paper is organized as
follows. In Section 2 we use an explicit finite difference method for Eq. (1.1), and investigate consistency and stability of the
resulting stochastic difference scheme (SDS). In Section 3 we use the Crank–Nicolson method and investigate the stability
of this method. This analysis clearly illustrates different levels of the influence of the coefficients in the equation. Finally in
the last section numerical examples are presented and compared with some analytical solutions.

2. An explicit finite difference method

Consider the following SPDE

ut(x, t)+ auxx(x, t)+ bux(x, t)+ cu(x, t)+ (dux(x, t)+ γ u(x, t))Ẇ (t) = 0 (2.1)

with initial condition u(x, 0) = f (x), 0 ≤ x ≤ 1 and boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T .

Random variable uji will be used to denote the approximation solution of (2.1) at the point (i1x, j1t). We approximate
ut(x, t)with

ut(x, t) ≈
u(x, t +1t)− u(x, t)

1t
(2.2)

and ux(i1x, j1t), uxx(i1x, j1t)with

ux(i1x, j1t) ≈
uji+1 − u

j
i

1x
, uxx(i1x, j1t) ≈

uji+1 − 2u
j
i + u

j
i−1

(1x)2
. (2.3)

Substituting these partial derivatives in Eq. (1.1) the following explicit finite difference approximation is obtained

uj+1i − u
j
i

1t
+ a
uji+1 − 2u

j
i + u

j
i−1

(1x)2
+ b
uji+1 − u

j
i

1x
+ cuji +

(
d
uji+1 − u

j
i

1x
+ γ uji

)
W ((j+ 1)1t)−W (j1t)

1t
= 0. (2.4)

Eq. (2.4) can be written as

uj+1i =
(
−a

1t
(1x)2

)
uji−1 +

(
1+ 2a

k
(1x)2

+ b
1t
1x
− c1t

)
uji +

(
−a

1t
(1x)2

− b
1t
1x

)
uji+1

−

(
d
1x
(uji+1 − u

j
i)+ γ u

j
i

)
(W ((j+ 1)1t)−W (j1t)), (2.5)

where by substituting R1 = a 1t
(1x)2

, R2 = b1t1x one obtains

uj+1i = (−R1)u
j
i−1 + (1+ 2R1 + R2 − c1t)u

j
i + (−R1 − R2)u

j
i+1

−

(
d
1x
(uji+1 − u

j
i)+ γ u

j
i

)
(W ((j+ 1)1t)−W (j1t)), (2.6)

which is known as the corresponding stochastic finite difference scheme.
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