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a b s t r a c t

In 2006, Naoki Saito proposed a Polyharmonic Local Fourier Transform (PHLFT) to
decompose a signal f ∈ L2(Ω) into the sum of a polyharmonic component u and a residual v,
whereΩ is a bounded and open domain in Rd. The solution presented in PHLFT in general
does not have an error with minimal energy. In resolving this issue, we propose the least
squares approximant to a given signal in L2([−1, 1]) using the combination of a set of
algebraic polynomials and a set of trigonometric polynomials. The maximum degree of the
algebraic polynomials is chosen to be small and fixed. We show in this paper that the least
squares approximant converges uniformly for a Hölder continuous function. Therefore
Gibbs phenomenon will not occur around the boundary for such a function. We also show
that the PHLFT converges uniformly and is a near least squares approximation in the sense
that it is arbitrarily close to the least squares approximant in L2 norm as the dimension
of the approximation space increases. Our experiments show that the proposed method
is robust in approximating a highly oscillating signal. Even when the signal is corrupted
by noise, the method is still robust. The experiments also reveal that an optimum degree
of the trigonometric polynomial is needed in order to attain the minimal l2 error of the
approximation when there is noise present in the data set. This optimum degree is shown
to be determined by the intrinsic frequency of the signal. We also discuss the energy
compaction of the solution vector and give an explanation to it.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In 2006, Naoki Saito proposed a Polyharmonic Local Sine Transform (PHLST) [1] in an attempt to develop a local Fourier
analysis and synthesismethodwithout encountering the infamous Gibbs phenomenon. PHLST is also used to resolve several
problems occurring in the Local Trigonometric Transforms (LTTs) of Coifman and Meyer [2] and Malvar [3,4], such as the
overlapping windows and the slopes of the bell functions (see [1] for the details on how PHLST resolves these problems).
Let us pause for a moment to define some notations. To index infinitely countable sets, we adopt the following standard

conventions: let N be the set of natural numbers, and the set Z+ := {0} ∪ N. To enumerate finite sets, we define
Zk := {0, 1, . . . , k− 1}, and Nk := {1, 2, . . . , k}.
PHLST first segments a given function (or input data) f (x), x ∈ Ω ⊂ Rd supported on an open and bounded domainΩ

into a set of disjoint blocks {Ωj : j ∈ ZM} for a positive integer M such that Ω =
⋃
j∈ZM

Ω j. Denote by fj the restriction of
the function f toΩ j, i.e., fj = χΩ j f , where χΩ j is the characteristic function on the setΩ j, j ∈ ZM . Then PHLST decomposes
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each fj into two components as fj = uj + vj. The components uj and vj are referred to as the polyharmonic component and
the residual, respectively. The polyharmonic component is obtained by solving the following polyharmonic equation:

∆muj = 0 inΩj, m ∈ N (1.1)

with a set of given boundary values and normal derivatives

∂q`uj
∂ νq`

=
∂q` f
∂ νq`

on ∂Ωj, ` ∈ Zm, (1.2)

where∆ =
∑d
i=1 ∂

2/∂x2i is the Laplace operator inRd. The natural numberm is called the degree of polyharmonicity, and q`
is the order of the normal derivative. These boundary conditions (1.2) enforce that the solution uj interpolates the function
values and the normal derivatives of orders q1, . . . , qm−1 of the original signal f along the boundary ∂Ωj. The parameter
q0 is normally set to 0, which means that uj = f on the boundary ∂Ωj, i.e., the Dirichlet boundary condition. If the blocks
Ωj, j ∈ ZM , are all rectangles (of possibly different sizes), PHLST sets q` = 2`, i.e., only normal derivatives of even orders are
interpolated. It is not necessary to match normal derivatives of odd orders when the blocks Ωj’s are rectangular domains.
This is because the Fourier sine series of the residual vj is equivalent to the complex Fourier series of the periodized vj after
odd reflection with respect to the boundary ∂Ωj, hence the continuity of the normal derivatives of odd orders (up to order
2m − 1) is automatically guaranteed. Thanks to these boundary conditions, the residual component can be expanded into
a Fourier sine series without facing the Gibbs phenomenon, and the Fourier sine expansion coefficients of the residual vj
decay rapidly, i.e., in the order O(‖k‖−2m−1), provided that there is no other intrinsic singularity in the domainΩj, where k
is the frequency index vector.
In our joint work [5], we implemented PHLST up to polyharmonicity of degree 5. The corresponding algorithm is called

PHLST5. In that work, we derived a fast algorithm to compute a 5th degree polyharmonic function that satisfies certain
boundary conditions. Although the Fourier sine coefficients of the residual of PHLST5 possess the same decaying rate as in
LLST (Laplace Local Sine Transform, the simplest version of PHLST with polyharmonicity of degree 1), by using additional
information of first order normal derivative from the boundary, the blocking artifacts are largely suppressed in PHLST5 and
the residual component becomes much smaller than that of LLST. Therefore PHLST5 provides a better approximation result.
Due to the difficulty of estimating higher order derivatives, we consider PHLST5 as the practical limitation of implementing
PHLST with higher degree polyharmonicity.
Soon after developing PHLST, N. Saito and K. Yamatani extended it to the Polyharmonic Local Cosine Transform (PHLCT) [6].

The PHLCT allows the Fourier cosine coefficients of the residual decay in the order O
(
‖k‖−2m−2

)
by setting q` = 2`+1, ` ∈

Zm in the boundary conditions (1.2) and by introducing an appropriate source term on the right-handed side of the
polyharmonic equation (1.1). In that work, an efficient algorithm was developed to improve the quality of images already
severely compressed by the popular JPEG standard, which is based on Discrete Cosine Transform (DCT).
Finally, N. Saito introduced the Polyharmonic Local Fourier Transform (PHLFT) [1] by setting q` = `, ` ∈ Zm in Eq.

(1.2) and by replacing the Fourier sine series with the complex Fourier series in expanding the vj components. With some
sacrifice of the decay rate of the expansion coefficients, i.e., of order O

(
‖k‖−m−1

)
instead of order O

(
‖k‖−2m−1

)
or of order

O
(
‖k‖−2m−2

)
, PHLFT allows one to compute local Fourier magnitudes and phases without facing the Gibbs phenomenon.

PHLFT also can capture the important information of orientation much better than PHLST and PHLCT. Moreover, it is fully
invertible and should be useful for various filtering, analysis, and approximation purposes.
Although the Fourier coefficients of the residual v decay rapidly, it is virtually useless for the purpose of approximation.

Therefore, in practice we shall not only seek fast decaying rate of the Fourier coefficients of the residual v, but also a residual v
of a small energy. However, the residual v in PHLST (or in PHLCT or PHLFT) in general does not necessarily have minimal
energy. In resolving this issue, we propose the least squares approximant to a given signal using the combination of a set of
algebraic polynomials and a set of trigonometric polynomials. The maximum degree of the algebraic polynomials is chosen
to be small and fixed.We show in this paper that the least squares approximant converges uniformly for a Hölder continuous
function. Therefore the Gibbs phenomenon will not occur on the boundary for such functions. We also show that the PHLST
(or PHLCT, PHLFT) converges uniformly and is a near least squares approximation in the sense that it is arbitrarily close to
the least squares approximant in the L2 norm as the dimension of the approximation space increases. Our experiments show
the proposed method is robust in approximating a highly oscillating signal. Even when the signal is corrupted by noise, the
method is still robust. The experiments also reveal that an optimum degree of trigonometric polynomial is needed in order
to attain minimal l2 error of the approximation when there is noise present in the data set. This optimum degree is shown
to be determined by the intrinsic frequency of the signal. We also discuss the energy compaction of the solution vector and
give an explanation to it.

2. Problem formulation and characterization of the solution

Let f be a noise corrupted and finite-energy signal on the interval J := [−1, 1], that is f ∈ L2(J). The L2 norm of a function
f ∈ L2(J) is denoted by ‖f ‖, that is ‖f ‖2 :=

∫
J |f (x)|

2 dx. Other norms used in this paper will be indicated by the appropriate
subscripts.
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