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a b s t r a c t

We develop a fast fully discrete Fourier–Galerkin method for solving a class of singular
boundary integral equations. We prove that the number of multiplications used in
generating the compressed matrix isO(n log3 n), and the solution of the proposed method
preserves the optimal convergence order O(n−t), where n is the order of the Fourier basis
functions used in the method and t denotes the degree of regularity of the exact solution.
Moreover, we propose a preconditioning which ensures the numerical stability when
solving the preconditioned linear system.Numerical examples are presented to confirm the
theoretical estimates and to demonstrate the approximation accuracy and computational
efficiency of the proposed algorithm.
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1. Introduction

Fourier–Galerkin methods are widely used in solving boundary integral equations [1–12]. In [4], a fast algorithm
was proposed, whose error analysis was presented in [13]. A fully discrete Galerkin boundary element method with
linear complexity was introduced in [2]. In [3], a fast Fourier–Galerkin method is used for solving singular boundary
integral equations, where a compression strategy is applied to the coefficient matrices generated by the method. This fast
Fourier–Galerkinmethod solves a sparse linear systemwith a coefficient matrix having onlyO(n log n) nonzero entries, and
enjoys the optimal convergence orderO(n−t), where n denotes the order of the Fourier basis functions used in this method
and t the degree of regularity of the exact solution. This paper continues the theme of [3] to develop an efficient numerical
quadrature scheme for the fast Fourier–Galerkin method which preserves the optimal convergence order of the original
method, and uses only quasi-linear numbers of multiplications for computing all nonzero entries. Specifically, we prove that
the number of multiplications used in generating the coefficient matrix is O(n log3 n), and the corresponding approximate
solution has the optimal convergence order O(n−t).
We face a challenging issue of developing a numerical integration method to efficiently compute nonzero coefficients.

When the frequencies of Fourier basis functions aremuch greater than 1, computing the corresponding coefficients involves
two-dimensional oscillatory integrals. We require that computing all nonzero entries uses only quasi-linear number of
multiplications. To treat these oscillatory integrals, we adopt the product integration method which was originated in [14]
so that the integrals of the oscillatory factors are evaluated exactly. With the product integration method, we can obtain
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sufficient precision to ensure that the solution has the optimal convergence order. For recent development of numerical
integration of oscillatory integrals, see [15–19]. The key idea to achieve the computational complexity requirement is to
use a quadrature strategy developed in [20]. Namely, we construct an approximation of the non-oscillatory factor of the
integrand with no more than O(n log n) number of functional evaluations for computing all integrals needed for the sparse
Fourier expansion. We then write the resulting numerical quadrature formula as discrete Fourier transforms of vectors of
the coefficients of Lagrange piecewise polynomial basis functions so that the fast Fourier transform [21] can be applied. To
construct the approximation of the non-oscillatory factor of the integrand, we employ themultiscale Lagrange interpolation
on sparse grids by using themathematical development presented in [20,22,23]. The recent research progress of sparse grid
methods can be found in a mastery review paper [24] and other publications [25–32]. Note that multidimensional integrals
were treated in [33] in the context of expanding a given function by the spherical harmonic functions. In a more general
context, lattice rules were proposed in [34,35] to efficiently evaluate multidimensional integrals.
This paper is organized in six sections with an Appendix. In Section 2, we review the truncation strategy [3] for solving

singular boundary integral equations and develop its fully discrete scheme.We also estimate the computational complexity
of the proposed algorithm. This is, we prove that by the proposed fully discrete method, the number of multiplications used
in generating the coefficient matrix is O(n log3 n), where n is the order of the Fourier basis functions used in the method.
We prove in Section 3 that the proposed method is stable and achieves the optimal convergence order. In Section 4, we
introduce a precondition for the compressed coefficient matrix that ensures the condition number of the preconditioned
matrix is bounded by a constant independent of the matrix size. We present in Section 5 numerical examples to confirm the
approximation accuracy and computational efficiency of the proposedmethod and to demonstrate the use of the method in
solving boundary value problem of the Laplace equation. We draw a conclusion in Section 6. For convenience of the readers,
we also add an Appendix at the end of this paper to review the fast quadrature scheme crucial for the development of the
main algorithm described in Section 2.

2. A fast fully discrete Fourier–Galerkin method

In this section, we review the fast Fourier–Galerkin method introduced in [3] for solving singular boundary integral
equations and develop its fully discrete scheme by using a numerical integration method introduced in [20].
Let I := [0, 2π ] and Z := {. . . ,−1, 0, 1, . . .}. For k ∈ Z, we set ek(x) := 1

√
2π
eikx, for x ∈ I , where i is the imaginary

unit. For each s ≥ 0, we denote by Hs(I) the standard Sobolev space which consists of functions φ ∈ L2(I) with property∑
k∈Z(1+k

2)s|φk|
2 < +∞, where φk := 〈φ, ek〉 are the Fourier coefficients of φ. The inner product of space Hs(I) is defined

for φ,ψ ∈ Hs(I) by 〈φ,ψ〉s :=
∑
k∈Z(1 + k

2)sφkψ̄k, φ, ψ ∈ Hs(I), and its norm is defined by ‖φ‖s := 〈φ, φ〉
1
2
s . For two

nonnegative numbers s1 and s2, we suppose that X ⊆ Hs1(I) and Y ⊆ Hs2(I). LetA : X → Y be a bounded linear operator
defined by

(Aw) (x) =
∫
I
a(x, y)w(y)dy, x ∈ I,

which has a bounded inversion A−1 : Y → X . Throughout this paper, we always assume that operator A has the Fourier
basis functions ek as its eigenfunctions. The kernel a of operator A may be either weakly singular, strong singular, or
hypersingular. We assume thatB : X → Y is a compact operator defined by

(Bw) (x) =
∫
I
b(x, y)w(y)dy, x ∈ I,

where b is a smooth kernel. The boundary integral equations considered in this paper have the form

(A+B) u = g, (2.1)

where g ∈ Y is a given function and u ∈ X is the unknown to be determined. Many boundary integral equations can
be written in the form (2.1). For example, both the interior and exterior Dirichlet problems in the planes with smooth
boundaries have the form (2.1) with the kernel a being weakly singular. The interior Neumann problem can be rewritten
in the form (2.1) with the strong singular or hypersingular kernel a. Deviations of the boundary integral equations for
the boundary value problems mentioned above can be found in [1]. More discussion on reformulation of boundary value
problem of the Laplace equation will be given in Section 5.
We now review the Fourier–Galerkin method for solving the boundary integral equations (2.1). Let N := {1, 2, . . .},

Z+n := {1, 2, . . . , n− 1} and Zn := Z+n ∪ {0}. For each n ∈ N, we define a finite-dimensional subspace Xn by Xn := span{ek :
|k| ∈ Z∗n}, where Z∗n denotes either Zn or Z+n , according to the type of integral operators A in Eq. (2.1). Let Pn denote the
orthogonal projection from X to Xn. The Fourier–Galerkin method for solving Eq. (2.1) is to seek un ∈ Xn such that

(PnA+ PnB) un = Png. (2.2)

Since operator A has the Fourier basis functions ek as its eigenfunctions, operator A commutes with the projection Pn,
that is

APn = PnA. (2.3)
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