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a b s t r a c t

In this paper a class of polynomial interior-point algorithms for P∗(κ) horizontal linear
complementarity problem based on a new parametric kernel function, with parameters
p ∈ [0, 1] and σ ≥ 1, are presented. The proposed parametric kernel function is not
exponentially convex and also not strongly convex like the usual kernel functions, and
has a finite value at the boundary of the feasible region. It is used both for determining
the search directions and for measuring the distance between the given iterate and the
µ-center for the algorithm. The currently best known iteration bounds for the algorithm
with large- and small-update methods are derived, namely, O((1+ 2κ)

√
n log n log n

ε
) and

O((1 + 2κ)
√
n log n

ε
), respectively, which reduce the gap between the practical behavior

of the algorithms and their theoretical performance results. Numerical tests demonstrate
the behavior of the algorithms for different results of the parameters p, σ and θ .

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

GivenM ∈ Rn×n and q ∈ Rn, the standard linear complementarity problem (SLCP) is to find a pair x, s ∈ Rn such that

s = Mx+ q, xTs = 0, (x, s) ≥ 0. (1)

IfM is positive semidefinite matrix, i.e.,

xTMx ≥ 0, ∀x ∈ Rn, (2)

then the SLCP is called a monotone SLCP, which is a fundamental decision and optimization problem. It also arises from
economic equilibrium problems, noncooperative games, traffic assignment problems, and optimization problems. For an
overview of these results we refer to [1–4].
The generalization of this problem is called the horizontal linear complementarity problem (HLCP), which seeks vectors

x, s ∈ Rn such that

Mx+ Ns = q, xTs = 0, (x, s) ≥ 0, (3)
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where q ∈ Rn, andM,N ∈ Rn×n. IfM and N have the column monotonicity property, i.e.,

Mx+ Ns = 0 H⇒ xTs ≥ 0, (4)

then the HLCP is called a monotone HLCP.
It is worth noting that HLCP becomes the SLCP if N is nonsingular, then HLCP reduces to SLCP. HLCP also includes the

standard linear optimization (LO) and convex quadratic optimization (CQO) [5]. There are a variety of solution approaches
for HLCP which have been studied intensively. Among them, the interior-point methods (IPMs) gained much attention
than other methods. After the seminal work of Karmarkar, many researchers have proposed IPMs for LO CQO and SLCP
and achieved plentiful results [6–12]. Theoretically, HLCP can be solved by using any algorithm for SLCP [13], but directly
solving HLCP is a better choice than using any algorithm for SLCP for solving the HLCP. Due to the close connection between
HLCPLOCQO and SLCP, some IPMs for LO CQO and SLCP have been extended to HLCP. For instance, Gonzaga et al. [14,15]
studied the largest step path following algorithm formonotone HLCP and showed that the fast convergence of the simplified
largest step path following algorithm. Huang et al. [16] proposed a high-order feasible interior-point method for HLCP
with O(

√
n log ε0

ε
) iterations. Monteiro et al. [17] studied the limiting behavior of the derivatives of certain trajectories

associated with the monotone HLCP. Zhang [5] presented a class of infeasible IPMs for HLCP and showed that the algorithm
has O(n2 log 1

ε
) under some mild assumptions. Some other relevant references can be found in [18–22].

It should be noted that all most known polynomial various of IPMs used the so-called central path as a guideline to
the optimal set, and some various of the Newton method to follow the central path approximately. However there is still
a gap between the practical behavior of these algorithms and these theoretical performance results with respect to the
update strategies of the duality gap parameter in the algorithm. The so-called large-update IPMs have superior practical
performance but with relatively weak theoretical results. While the so-called small-update IPMs enjoy the best known
worst-case iteration bound but their performance in computational practice is poor. This gap was reduced by Peng et al.
[10] who introduced the so-called self-regular barrier functions based on IPMs for LO and semidefinite optimization (SDO).
Bai et al. [7,8,23] who presented IPMs based on a new class of non-self-regular kernel functions for LO and second-order
cone optimization (SOCO) and also obtained the same best known iteration bounds for the algorithmswith large- and small-
update methods as they are in [10]. Recently, Bai et al. [24], Cho et al. [25] proposed large-update interior-point algorithms
for P∗(κ)-SLCP, i.e., for κ ≥ 0, x ∈ Rn, the matrixM satisfies

s = Mx H⇒ xTs ≥ −4κ
∑
i∈I+

xisi, I+ = I+(x, s) = {i : xisi ≥ 0}, (5)

based on special kernel functions, respectively. Note that for κ = 0, P∗(0)-SLCP is the monotone SLCP.
In this paper, we consider P∗(κ)-HLCP, i.e., the matricesM and N satisfy additionally the following assumption.

Assumption 1.1.

Mx+ Ns = 0 H⇒ xTs ≥ −4κ
∑
i∈I+

xisi, ∀(x, s) ∈ R2n, (6)

where κ is a nonnegative number.

It should be noted that Assumption 1.1 can guarantee that themodified Newton-system has a unique solution. The proof
of the following lemma is quite similar to Lemma 4.1 in [4], so we omit it here.

Lemma 1.2. Under Assumption 1.1, the modified Newton-system(
M1x+ N1s
S1x+ X1s

)
=

(
0
h

)
has a unique solution (1x,1s) for (x, s) > 0, where X = diag(x) and S = diag(s).

Obviously, if κ = 0, the P∗(κ)-HLCP reduces the monotone HLCP.
Kernel functions play an important role in the design and analysis for the interior-point algorithms [8,10]. They not

only can be used to define the new search directions but also can be considered as a measure for the distance between the
given iterate and the µ-center. In general each kernel function gives rise to an interior-point algorithm. Recently, Bai et al.
[7] presented a new efficient large-update primal–dual interior-point method for LO based on a finite kernel function as
follows

ψ1,σ (t) =
t2 − 1
2
+
eσ(1−t) − 1

σ
, σ ≥ 1. (7)

It is not exponentially convex and also not strongly convex like the usual kernel functions [8,10], which has a finite value at
the boundary of the feasible region, i.e.,

lim
t→0

ψ1,σ (t) = ψ1,σ (0) =
eσ − 1
σ
−
1
2
<∞. (8)
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