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a b s t r a c t

The optimal dividend problem proposed in de Finetti [1] is to find the dividend-payment
strategy that maximizes the expected discounted value of dividends which are paid to
the shareholders until the company is ruined. Avram et al. [9] studied the case when the
risk process is modelled by a general spectrally negative Lévy process and Loeffen [10]
gave sufficient conditions under which the optimal strategy is of the barrier type. Recently
Kyprianou et al. [11] strengthened the result of Loeffen [10]which established a larger class
of Lévy processes forwhich the barrier strategy is optimal among all admissible ones. In this
paper we use an analytical argument to re-investigate the optimality of barrier dividend
strategies considered in the three recent papers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the classical optimal dividend control problem for a company. The idea is that the company
wants to pay some its surplus to the shareholders as dividends, the problem is to find a dividend-payment strategy that
maximizes the expected discounted value of all payments until the company’s capital is negative for the first time. This
optimization problem goes back to [1], who considered a discrete time randomwalk with step sizes±1 and proved that the
optimal dividend strategy is a barrier strategy. Optimal dividend problem has recently gained a lot of attention in actuarial
mathematics. It has been studied extensively in the diffusion process setting, see [2–5]. It is well known that under some
reasonable assumptions, the optimality in the diffusion process setting is achieved by using a barrier strategy (see [4,5]).
However, in the Cramér–Lundberg setting this is not the case; it was shown in [6] that the optimal dividend strategy is of so-
called band type. This results was re-derived by means of viscosity theory in [7]. In particular, for exponentially distributed
claim sizes this optimal strategy simplifies to a barrier strategy. The summary of Finetti and Gerber’s work can be found
in [8]. Recently, Avram et al. [9] considered the case where the risk process is given by a general spectrally negative Lévy
process and gave a sufficient condition involving the generator of the Lévy process for the optimal strategy to consist of a
barrier strategy. In [10], Loeffen defined an optimal barrier level which is slightly different than the one given in [9] and
proved the remarkable fact that, if the q-scale functionW (q) is convex in the interval (a∗,∞), where

a∗ = sup{a ≥ 0 : W (q)′(a) ≤ W (q)′(y) for all y ≥ 0} <∞,
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then the barrier strategy at a∗ is an optimal strategy among all admissible strategies. Moreover, it is shown that when the
LévymeasureΠ of X has a completelymonotone density, thenW (q)′ is strictly convex on (0,∞) for all q > 0. Consequently,
the barrier strategy at a∗ is an optimal strategy. In a very recent work [11], the authors prove amore general result: Suppose
that the Lévy measure Π of X has a non-increasing density which is logconvex, then for q > 0 the scale function W (q) is
convex in the interval (a∗,∞). As a consequence, the barrier strategy at a∗ is an optimal strategy. In the other recent paper,
Albrecher and Thonhausera [12] discussed the maximization problem in a generalized setting including a constant force of
interest in the Cramér–Lundberg riskmodel. The value function is identified in the set of viscosity solutions of the associated
Hamilton–Jacobi–Bellman equation and the optimal dividend strategy in this riskmodel is derived,which in the general case
is again of band type and for exponential claim sizes collapses to a barrier strategy.
In this paper, it is assumed that the surplus process is a general spectrally negative Lévy process, we provide an analytical

study of the solution to the classical dividend control problem due to [9,11,10].
The rest of the paper is organized as follows. In Section 2, we recall some preliminaries on the spectrally negative

Lévy process and state the problem. In Section 3, we will review some basic results on the logconvexity and complete
monotonicity of the functions that will be needed later on. In Section 4 we discuss the convex solutions for two kinds of
integro-differential equations and in Section 5 we present the main results and prove them by using the results of Section 4
and some earlier results from [9,11,10]. Finally, some remarks are included in Section 6.

2. The model

Suppose that X = (X(t) : t ≥ 0) is a spectrally negative Lévy process with probabilities {Px : x ∈ R} such that X(0) = x
with probability one, where we write P = P0. Let Ex be the expectation with respect to Px and write E = E0. That is to say
X is a real valued stochastic process whose paths are almost surely right continuous with left limits and whose increments
are stationary and independent. Let {Ft : t ≥ 0} be the natural filtration satisfying the usual assumptions. Since the jumps
of a spectrally negative Lévy process are all non-positive, the moment generating function E(eθX(t)) exists for all θ ≥ 0 and
is given by E(eθX(t)) = etψ(θ) for some function ψ(θ), which is called the Laplace exponent of X . From the Lévy–Khintchin
formula [13,14], it is known that

ψ(θ) = aθ +
1
2
σ 2θ2 −

∫
∞

0

(
1− e−θx − θx1{0<x<1}

)
Π(dx) (2.1)

where a ∈ R, σ ≥ 0 and Π is a measure on (0,∞) satisfying
∫
∞

0 (1 ∧ x
2)Π(dx) < ∞ and is called the Lévy measure.

ψ is strictly convex on (0,∞) and satisfies ψ(0+) = 0, ψ(∞) = ∞ and ψ ′(0+) = EX(1). Further, ψ is strictly
increasing on [φ(0),∞), where φ(0) is the largest root of ψ(θ) = 0 (there are at most two). We shall denote the right-
inverse function of ψ by φ: [0,∞) → [φ(0),∞). If σ 2 > 0 and Π = 0, then the process is a Brownian motion;
When σ 2 = 0 and

∫
∞

0 Π(dx) < ∞, the process is a compound Poisson process; when σ 2 = 0,
∫
∞

0 Π(dx) = ∞ and∫
∞

0 (1 ∧ x)Π(dx) < ∞, the process has an infinite number of small jumps, but is of finite variation; when σ
2
= 0,∫

∞

0 Π(dx) = ∞ and
∫
∞

0 (1 ∧ x)Π(dx) = ∞, the process has infinitely many jumps and is of unbounded variation. In
short, such a Lévy process has bounded variation if and only if σ = 0 and

∫ 1
0 xΠ(dx) < ∞. In this case the Lévy exponent

can be re-expressed as

ψ(α) = bα −
∫
∞

0
(1− eαx)Π(dx),

where b = a−
∫ 1
0 xΠ(dx) is known as the drift coefficient. If σ

2 > 0, X is said to have a Gaussian component.
For θ such thatψ(θ) is finite we denote by Pθx an exponential tilting of themeasure Px with a Radom–Nikodym derivative

with respect to Px given by

dPθx
dPx

∣∣∣∣
Ft

= exp(θ(X(t)− x)− ψ(θ)t).

Under the measure Pθx the process X is still a spectrally negative Lévy process with Laplace exponent ψθ given by

ψθ (η) = ψ(η + θ)− ψ(θ), η ≥ −θ.

We recall from [15,13], that for each q ≥ 0 there exits a continuous and increasing functionW (q)
: R→ [0,∞), called

the q-scale function, defined in such a way thatW (q)(x) = 0 for all x < 0, and on [0,∞) its Laplace transform is given by∫
∞

0
e−θxW (q)(x)dx =

1
ψ(θ)− q

, θ > φ(q). (2.2)

For convenience we shall writeW in place ofW (0) and call this the scale function rather than the 0-scale function.
The following facts about the smoothness of the scale functions are taken from [11]. If X has paths of bounded variation

then, for all q ≥ 0,W (q)
|(0,∞) ∈ C1(0,∞) if and only ifΠ has no atoms. In the case that X has paths of unbounded variation,
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