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a b s t r a c t

A new method is introduced for the computation of hyperterminants. It is based on
recurrence relations, and can also be used to compute the parameter derivatives of the
hyperterminants. These parameter derivatives are needed in hyperasymptotic expansions
in exceptional cases. Numerical illustrations and an application are included.
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1. Hyperterminants

In the last two decades hyperasymptotic expansions were constructed for solutions of differential equations and
difference equations, and for integrals with saddles. See [1–12]. In this way exponentially small phenomena were
incorporated in the expansions, and it gave a powerful method to compute the so-called Stokes multipliers, or connection
coefficients, to arbitrary precision [8]. Hyperasymptotic expansions also incorporate the higher-order Stokes phenomenon,
which seems to play an important role in some partial differential equations, [13,6].
Hyperasymptotic expansions are in terms of hyperterminants. In [14] the hyperterminants are defined and a new integral

representation is used to obtain convergent expansions for the hyperterminants in series of confluent hypergeometric
functions. For the coefficients in these expansions a recursive scheme is given. These expansions can be used to compute
the hyperterminants to any given accuracy.
In the papersmentioned above, the asymptotic approximations are of the formwj(z) ∼ eλjzzµj , j = 1, . . . , n, as |z| → ∞.

It is usually assumed that λj 6= λk, whenever j 6= k. In the case that there are j, k such that j 6= k, λj = λk and µj − µk is an
integer, extra logarithmic factors, ln z, appear in the expansions, and newmethods are needed to compute the corresponding
hyperterminants. For examples see [1,3] and the main application in this paper. Note that ddµ z

µ
= ln(z)zµ. Hence, the new

logarithmic factor can be seen as the result of a µ-derivative of the original expansion.
In this paper we construct an alternative method based on recurrence relations for the computation of the

hyperterminants. As is shown in [15], the computation of parameter derivatives of solutions of recurrence relations is not
a big problem. Taking a parameter derivative of a linear recurrence relation does not change the shape of the recurrence
relation itself. Hence, if it is possible to use the recurrence relation to compute its solutions numerically, then it is also
possible to use the recurrence relation to compute the parameter derivatives of its solutions.
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The definition of the hyperterminants is

F (0) (z) = 1

F (1)
(
z;
M0
σ0

)
=

∫
[π−θ0]

0

eσ0t0 tM0−10

z − t0
dt0

F (`+1)
(
z;
M0, . . . ,M`
σ0, . . . , σ`

)
=

∫
[π−θ0]

0
· · ·

∫
[π−θ`]

0

eσ0t0+···+σ`t` tM0−10 · · · tM`−1`

(z − t0)(t0 − t1) · · · (t`−1 − t`)
dt` · · · dt0,

(1.1)

where we use the notation θj = ph σj and
∫
[η]
=
∫
∞eiη . In [14] we also give an alternative integral representation. From

integral representation (1.1) it is obvious that the hyperterminants are multi-valued functions with respect to z, but also
with respect to σj. Connection relations with respect to all these variables are given in [14].
In exceptional cases (see for example [1] and [3]) extra factors

(
ln tj

)n appear in the integrand, and these new functions
can be seen as parameter derivatives of the original hyperterminants:

∂n

∂Mnj
F (`+1)

(
z;
M0, . . . ,M`
σ0, . . . , σ`

)
=

∫
[π−θ0]

0
· · ·

∫
[π−θ`]

0

eσ0t0+···+σ`t` tM0−10 · · · tM`−1`

(
ln tj

)n
(z − t0)(t0 − t1) · · · (t`−1 − t`)

dt` · · · dt0. (1.2)

We could construct recurrence relations with respect to each of theMj parameters, but in applications one mainly needs
recurrence relations with respect to the finalMj parameter. In this paper we will use linear first-order recurrence relations
with respect to the M` parameter. Our method requires that this parameter is not an integer. Since it is always possible to
interchange theMj parameters, the method that we give in this paper will always work, except when all theMj are integers.
In section `+ 1, ` = 1, 2, 3, we discuss the computation of the level ` hyperterminant. Each of these sections is split in

two parts: First we deal with the case that the variable z = 0, and then we use these results and deal with the case z 6= 0.
In applications |z| is large, but for the computation of the Stokes multipliers we will need hyperterminants with z = 0. In
Section 3 we also give a numerical illustration.
Finally, in Section 5 we apply these results and discuss the hyperasymptotics of a linear third-order differential equation

in which logarithmic factors appear.

2. Level 1

We will assume thatM is not an integer and z 6= 0. The definition of the first hyperterminant reads

F (1)
(
z;
M
σ

)
=

∫
[π−θ ]

0

eσ t tM−1

z − t
dt

= eMπ iσ 1−M
∫
∞

0

e−τ τM−1

zσ + τ
dτ = eMπ i+σ zzM−1Γ (M)Γ (1−M, σ z), (2.1)

when |ph (σ z)| < π , where Γ (a, z) is the incomplete gamma function (see Section 11.2 in [16]). The integrals in (2.1)
converge forRM > 0. We use analytical continuation via the recurrence relation below to define this function forRM 6 0.
It follows that

F (1)
(
0;
M
σ

)
= eMπ iσ 1−MΓ (M − 1). (2.2)

Hence,
∂

∂M
F (1)

(
0;
M
σ

)
= (π i− ln(σ )+ ψ(M − 1)) F (1)

(
0;
M
σ

)
, (2.3)

where ψ(z) is the logarithmic derivative of the gamma function (see Section 3.4 in [16]).
For r = 0, 1, 2, . . ., let

yr = F (1)
(
z;
M + r
σ

)
and y′r =

∂yr
∂M

, (2.4)

then we have the recurrence relation

yr+1 − zyr = F (1)
(
0;
M + r + 1

σ

)
, (2.5)

with normalising condition
∞∑
r=0

(−σ)r yr
r!

= F (1)
(
z;
M
0σ

)
= eMπ izM−1Γ (M)Γ (1−M) =

πeMπ izM−1

sinMπ
, RM < 1. (2.6)

These two results follow from the first integral representation in (2.1), where we need 0 < RM < 1 for the proof of
(2.6), and use analytic continuation to extend the result to RM < 1. Note that in the definitions (1.1) the phase of the
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