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a b s t r a c t

We present a fully implicit finite difference method for the unsteady incompressible
Navier–Stokes equations. It is based on the one-step θ-method for discretization in time
and a special coordinate splitting (called vectorial operator splitting) for efficiently solving
the nonlinear stationary problems for the solution at each new time level. The resulting
system is solved in a fully coupled approach that does not require a boundary condition for
the pressure. A staggered arrangement of velocity and pressure on a structured Cartesian
grid combined with the fully implicit treatment of the boundary conditions helps us to
preserve the properties of the differential operators and thus leads to excellent stability
of the overall algorithm. The convergence properties of the method are confirmed via
numerical experiments.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Fluid flows with high Reynolds numbers or complex geometries are challenging to simulate and of great interest to
industry; hence there is significant demand for robust and stable algorithms and software, perhaps even at the expense of a
moderately increased computational cost. Fully implicit time-stepping methods are generally more robust and stable than
the explicit and semi-explicit methods. Therefore, as suggested in [1], fully implicit methods should be further investigated
and developed.
Themost popular time-steppingmethods for theNavier–Stokes equations are the so-called projection or operator splitting

methods (e.g., fractional step or pressure-correction methods) and are not fully implicit; see [2,1]. Decoupling the velocity
and pressure reduces the system into simpler sub-problems, but the choice of boundary conditions for the pressure in
these procedures is problematic. Moreover, the explicit element introduced by this decoupling requires small time steps
to maintain stability. Although operator splitting methods can work well, they must be used with care in terms of how
well the overall solution algorithm behaves. They are usually not suitable for flows with high Reynolds numbers or long
simulation times because the requirement of a small time step size.
After discretization in space and time, a fully implicit approach leads to a system of nonlinear equations that may be

singular [1]. For this reason, special spatial discretization or stabilization techniques are needed. Strongly coupled solution
strategies can improve the stability considerably; however, they also need to be able to handle large nonlinear algebraic
systems. Direct solvers can be used for the solution of the linear systems of equations that arise in this process, but they
typically require large amounts of memory, and despite increases in computational power, are still not feasible for large-
scale computations, particularly for unsteady 3D problems. Hence iterative solvers are the preferred choice for the solution
of these systems. Coordinate splitting and multigrid are two powerful methods for solving such systems.
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In this paper, we use the linear two-layer (one-step) scheme, which is also known as the θ-method, for the temporal
discretization; see e.g., [3]. We employ finite difference approximations in space that utilize computer resources effectively
and hence enable efficient computations. For the solution of the nonlinear stationary problems that arise after the temporal
discretization,we use coordinate splitting based on theDouglas–Rachford scheme [4]. The splitting procedure is constructed
in a way that leaves the system coupled to allow the satisfaction of the boundary conditions but avoids the introduction of
artificial boundary conditions for the pressure.
The paper is organized as follows. The problem is formulated in the next section. The time discretization is presented in

Section 3, including a discussion on the singularity of direct fully implicit schemes. Issues associated with the solution of the
stationary problems that need to be solved after discretization in time are discussed in Section 4. These include requirements
to be satisfied by the differential problem and the choice of discretization in space aswell as the coordinate splittingmethod.
Finally, numerical results are presented in Section 5 and conclusions in Section 6.

2. Problem statement

2.1. Incompressible Navier–Stokes equations

We consider the multi-dimensional incompressible Navier–Stokes equations in dimensionless form

∂u
∂t
+ (u · ∇)u = ν∇2u−∇p+ g (1)

coupled with the continuity equation, also called the incompressibility condition,

div u = ∇ · u = 0 (2)

onΩ× (0, T ), whereΩ is a bounded, compact (spatial) domain with a piecewise smooth boundary ∂Ω . Here u = u(x, t) =
(u, v, w) is the fluid velocity at position x ∈ Ω and time t ∈ (0, T ) for given T . Also p = p(x, t) is the fluid kinematic
pressure, ν = 1/Re is the kinematic viscosity, where Re is the Reynolds number, g is an external force, ∇ is the gradient
operator, and ∇2 is the Laplacian operator.
We can write the momentum equation (1) in the following form,

∂u
∂t
+ (C + L)u+∇p = g, (3)

where C = u · ∇ is the nonlinear convection operator and L = −ν∇2 is the linear viscosity operator.
Taking into account the incompressibility constraint (2), the nonlinear convective term (u · ∇)u in Eq. (1) can be written

in the equivalent form

Cu = (u · ∇)u+
1
2
u(∇ · u)

= ∇ · (uu)−
1
2
u(∇ · u)

=
1
2
[∇ · (uu)+ (u · ∇)u], (4)

which is skew-symmetric. The advantage of using the skew-symmetric form (4) is that it conserves both the square of
velocity as well as the kinetic energy, whereas the divergence form ∇ · (uu) conserves only the kinetic energy, and the
(original) non-divergence form (u · ∇)u conserves neither the square of the velocity nor the kinetic energy.

2.2. Initial and boundary conditions

In our investigations, we assume an initial condition

u|t=0 = u0(x), (5)

that is divergence-free, i.e., ∇ · u0 = 0, and the following boundary conditions
u|∂Ω = ub(t),

i.e., the velocity is prescribed at the boundary.

Remark. In order to avoid singularities, the initial and boundary conditions are assumed to agree at t = 0 and x ∈ ∂Ω .

The incompressible Navier–Stokes equations can be classified as partial differential–algebraic equations, e.g., [5]. The
challenges in their numerical solution are well known; they are connected with the fact that the Navier–Stokes equations
are not an evolutionary system of Cauchy–Kovalevskaya type and that the pressure is an implicit function responsible for
the satisfaction of the continuity equation. Furthermore, no boundary conditions on the pressure can be imposed on rigid
boundaries. This creates formidable obstacles for the construction of fully implicit schemes.
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