

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/cam)

Journal of Computational and Applied **Mathematics**

journal homepage: www.elsevier.com/locate/cam

Tensor ranks for the inversion of tensor-product binomials

Eugene Tyrtyshnikov

Institute of Numerical Mathematics, Russian Academy of Sciences, Gubkin Street, 8, Moscow 119333, Russian Federation

a r t i c l e i n f o

Article history: Received 8 February 2008

Dedicated to the memory of Gene Golub

MSC: 15A12 65F10 65F15

Keywords: Tensor ranks Kronecker product Low-rank matrices Inverse matrices Multilevel matrices Toeplitz matrices

1. Introduction

Tensor decompositions are becoming a subject accumulating research interests in several important fields. Among them one should mention complexity theory for polynomial and matrix computations [\[1,](#page--1-0)[2\]](#page--1-1), data analysis supported by the Kruskal uniqueness property and Tucker reduction [\[3,](#page--1-2)[2\]](#page--1-1) and numerous multidimensional applications (see [\[4\]](#page--1-3)).

Despite an ever-increasing interest and several significant results (for some bibliography see [\[3](#page--1-2)[,5](#page--1-4)[,2,](#page--1-1)[6,](#page--1-5)[4\]](#page--1-3)), many natural questions about seemingly ''simple'' cases are still not answered. In this paper we present some nontrivial tensor rank estimates for the inverse matrices.

Consider a matrix A of order $n = pq$ and its tensor-product decomposition

$$
A = \sum_{s=1}^{r} U_s \otimes V_s \tag{1}
$$

with minimal possible number of terms. In this case we call *r* a *tensor rank* of *A*, and write

 $r =$ tRank (A) .

Matrices *U^s* and *V^s* are of order *p* and *q*, respectively, and *U* ⊗ *V* means the Kronecker (tensor) product of matrices *U* and *V*.

By definition, if $U = [u_{ii}]$ is of order p and $V = [v_{kl}]$ is of order q, then $U \otimes V$ is a matrix of order $n = pq$ with the following block structure:

 $U \otimes V =$ $\begin{bmatrix} u_{11} & \cdots & u_{1p} \end{bmatrix}$ $u_{p1}V \ldots u_{pp}V$ 1 .

A B S T R A C T

The main result reads: if a nonsingular matrix A of order $n = pq$ is a tensor-product binomial with two factors then the tensor rank of A^{-1} is bounded from above by min{ p , q }. binomial with two factors then the tensor rank of A^{-1} is bound
The estimate is sharp, and in the worst case it amounts to \sqrt{n} .

© 2010 Elsevier B.V. All rights reserved.

E-mail address: [tee@inm.ras.ru.](mailto:tee@inm.ras.ru)

^{0377-0427/\$ –} see front matter © 2010 Elsevier B.V. All rights reserved. [doi:10.1016/j.cam.2010.02.006](http://dx.doi.org/10.1016/j.cam.2010.02.006)

Of course, the tensor rank of *A* is calculated for some fixed *p* and *q* whose product is the order of *A*, so maybe a better way of notation would be

$$
tRank(A) = tRank_{p,q}(A),
$$

but here we still skip *p* and *q* for the sake of brevity.

It is obvious that a pair of indices (i, k) with $1 \le i \le p$, $1 \le k \le q$ naturally points to a row in *A* (and in $U \otimes V$), and similarly, another pair (*j*, *l*) indicates a column in *A*. It follows that

$$
(A)_{(i,k),(j,l)} = \sum_{s=1}^{r} (U_s)_{ij} (V_s)_{kl}.
$$

This suggests reshaping *A* into a matrix

$$
B = \text{reshape}(A)
$$

in the following way:

$$
(B)_{(i,j),(l,l)} = (A)_{(i,k),(j,l)},
$$
\n(3)

the sizes of A and B being (pq) \times (pq) and $p^2 \times q^2$, respectively. Then, Eqs. [\(2\)](#page-1-0) and [\(3\)](#page-1-1) show that B is the sum of *r* columnby-row matrices. Consequently (see [\[7\]](#page--1-6)),

$$
tRank(A) = rank(B). \tag{4}
$$

We are interested in sharp estimates for the tensor rank of A^{-1} , provided that *A* is nonsingular. A trivial bound emanating from [\(4\)](#page-1-2) reads

 $\text{tRank}(A^{-1}) \leq n,$

and does not reveal any dependence on *r*, or on *p* and *q*. The results presented below assume that the entries of all matrices are complex numbers or belong to a subfield of complex numbers; whether they are valid for finite fields is an open question.

2. Main result

Let $n = pq$; the tensor decompositions are considered for fixed p and q. Assume that $A = U \otimes V$ is nonsingular. Then both *U* and *V* are nonsingular and, as is easy to check,

 $(U \otimes V)^{-1} = U^{-1} \otimes V^{-1}.$

Therefore, if tRank(A) = 1, then tRank(A^{-1}) = 1.

All the cases with tRank(A) \geq 2 are significantly more intricate.

Theorem 2.1. Let a matrix A of order $n = pq$ be nonsingular, and assume that

 $tRank(A) = 2.$

Then

 $\text{tRank}(A^{-1}) \leq \min\{p,q\}.$

Proof. Under the premises of the theorem we can write

 $A = U_1 \otimes V_1 + U_2 \otimes V_2.$

Let us assume first that all the matrices U_1 , V_1 , U_2 , V_2 are nonsingular. Moreover, assume that all the eigenvalues of $U_1U_2^{-1}$ and $V_2V_1^{-1}$ are simple. Then both matrices can be diagonalized by similarity transformations:

$$
U_1 U_2^{-1} = X \Lambda X^{-1}, \quad \Lambda = \text{diag}\{\lambda_1, \dots, \lambda_p\},
$$

$$
V_2 V_1^{-1} = Y M Y^{-1}, \quad M = \text{diag}\{\mu_1, \dots, \mu_q\}.
$$

Hence,

$$
A (U_2^{-1} \otimes V_1^{-1}) = (X \otimes Y) Z (X^{-1} \otimes Y^{-1}),
$$

where

 $Z = \Lambda \otimes I + I \otimes M$.

Download English Version:

<https://daneshyari.com/en/article/4640704>

Download Persian Version:

<https://daneshyari.com/article/4640704>

[Daneshyari.com](https://daneshyari.com/)