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a b s t r a c t

We present a new finite volume method for the numerical solution of shallow water
equations for either flat or non-flat topography. The method is simple, accurate and avoids
the solution of Riemann problems during the time integration process. The proposed
approach consists of a predictor stage and a corrector stage. The predictor stage uses the
method of characteristics to reconstruct the numerical fluxes, whereas the corrector stage
recovers the conservation equations. The proposed finite volumemethod is well balanced,
conservative, non-oscillatory and suitable for shallow water equations for which Riemann
problems are difficult to solve. The proposed finite volume method is verified against
several benchmark tests and shows good agreement with analytical solutions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

During the last decades there has been an enormous amount of activity related to the construction of approximate
solutions for the shallow water equation written in conservative form as
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where Z(x) is the function characterizing the bottom topography, h(t, x) is the height of thewater above the bottom, g is the
acceleration due to gravity and u(t, x) is the flow velocity. Eq. (1.1) has been widely used tomodel water flows, flood waves,
dam-break problems, and has been studied in a number of books and papers; compare [1–5] among others. Computing their
numerical solutions is not trivial due to nonlinearity, the presence of the convective term and the coupling of the equations
through the source term. In many applications of (1.1), the convective terms are distinctly more important than the source
terms; particularly when certain non-dimensional parameters reach high values (e.g. the Froude number), these convective
terms are a source of computational difficulties and oscillations. It is well known that the solutions of Eq. (1.1) present steep
fronts and even shock discontinuities, which need to be resolved accurately in applications and often cause severe numerical
difficulties [6,2].
Many numerical methods are available in the literature to solve the shallow water equations. One of the most popular

techniques is the well-known Roe scheme [7] originally designed for hyperbolic systems without accounting for source
terms. In [8], the authors modified the Roe scheme [7] to solve the shallow water equations with source terms in which
the idea of balancing the gradient flux with the source term is formulated. This method has been improved in [9] for
general channel flows. However, for practical applications, this method may become computationally demanding due to
its treatment of the source terms. In the context of well-balanced methods, wemention the work [10] developed to analyze
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the source term due to cross-section irregularities, and the work in [11] which analyzes the effects of source term in flux
difference splitting technique. The authors in [12] have developed exact solutions for the Riemann problem at the interface
with a sudden variation in the topography. The main idea in their approach was to define the bottom level such that a
sudden variation in the topography occurs at the interface of two cells. A different approach was adopted in quasi-steady
wave propagation method in [6]. In this method, an additional Riemann problem in the center of each cell is introduced
for balancing the source terms and the flux gradients. An approach based on a local hydrostatic reconstruction has been
proposed in [13] for open channel flows with topography. The extension of ENO and WENO schemes to shallow water
equations has been studied in [14]. Unfortunately,most ENO andWENO schemes that solves real flows correctly are still very
computationally expensive. In the framework of Runge–Kutta discontinuous Galerkin methods, authors in [15] extended
the method to a class of hyperbolic system of balance laws with separable source terms. The central idea in this approach
is a proper decomposition of the source term allowing well balancing and preserving the genuinely high resolution of
the method. However, most of these methods present results with an order of accuracy smaller than the expected in the
solutions for unstructured grids, see for example [16]. Besides this fact, it is well known that TVD schemes have their order of
accuracy reduced to first order in the presence of shocks due to the effects of limiters. On the other hand, numerical methods
based on kinetic reconstructions have been studied in [17], but the complexity of these methods is relevant.
In current work we propose a new family of numerical schemes that incorporate the techniques from method of

characteristics into the reconstruction of numerical fluxes. Our main goal is to present a class of numerical methods
that are simple, easy to implement, and accurately solves the shallow water equations without relying on a Riemann
solver. This goal is reached by integrating twice the shallow water system (1.1) in time and space. In the first integration,
Eq. (1.1) is integrated over an Eulerian time–space control volume. We term this step by corrector stage applied to the
conservation equations. In the second integration, the shallowwater equations are rewritten in a non-conservative form and
integrated along the characteristics defined by the water velocity. This step is called predictor stage and used to calculate
the numerical fluxes required in the corrector stage. Our method can be treated as a conservative modified method of
characteristics for shallowwater equations or as a Riemann solver-free finite volumemethod for shallowwater equations. To
approximate the characteristic curves an iterative process is used and numerical fluxes are computed by using interpolation
procedures. The discretization of flux gradients and source terms are well balanced and the method satisfies the exact
C-property. The proposed scheme has the ability to handle calculations of slowly varying flows as well as rapidly varying
flows over continuous and discontinuities bottom beds. We should mention that another advantage in using the method
of characteristic is that no boundary conditions are needed for the numerical fluxes at the predictor stage. These features
are demonstrated using several benchmark problems for shallow water flows. Results presented in this paper show high
resolution of the proposed finite volume characteristics method and confirm its capability to provide accurate and efficient
simulations for shallow water flows including complex topography.
In this paper, first the finite volume characteristics method is formulated in Section 2. Thereafter, an analysis of stability

and convergence is presented in Section 3. Section 4 is devoted to the application of our method to the shallow water
equations. After numerical results and examples are presented in Section 5, accuracy and efficiency of the finite volume
characteristics scheme are discussed. Concluding remarks end the paper in Section 6.

2. The finite volume characteristics method

To formulate the finite volume characteristics (FVC) scheme we first consider a scalar homogeneous equation of a
nonlinear conservation law given by

∂tu+ ∂xf (u) = 0. (2.1)

We discretize the space domain in cells [xi−1/2, xi+1/2] with same length 1x for sake of simplicity. We also divide the time
interval into subintervals [tn, tn+1] with uniform size 1t . Here, tn = n1t , xi−1/2 = i1x and xi = (i + 1/2)1x is the
center of the control volume. Integrating Eq. (2.1) with respect to time and space over the time–space control domain
[tn, tn+1] × [xi−1/2, xi+1/2] shown in Fig. 2.1, we obtain the following discrete equation

Un+1i = Uni −
1t
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)
, (2.2)

where Uni is the space average of the solution u in the control volume [xi−1/2, xi+1/2] at time tn i.e.,

Uni =
1
1x

∫ xi+1/2

xi−1/2
u(tn, x) dx,

and f (Uni±1/2) are the numerical fluxes at x = xi±1/2 and time tn. The spatial discretization of Eq. (2.2) is complete when
a numerical construction of the fluxes f (Uni±1/2) is chosen. In general, this construction requires a solution of Riemann
problems at the interfaces xi±1/2. From a computational viewpoint, this procedure is very demanding and may restrict the
application of the method for which Riemann solutions are not available.
In the present work, we reconstruct the intermediate states Uni±1/2 using the method of characteristics. The fundamental

idea of this method is to impose a regular grid at the new time level and to backtrack the flow trajectories to the previous
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