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a b s t r a c t

Degenerate parabolic equations of Kolmogorov type occur in many areas of analysis
and applied mathematics. In their simplest form these equations were introduced by
Kolmogorov in 1934 to describe the probability density of the positions and velocities of
particles but the equations are also used as prototypes for evolution equations arising in
the kinetic theory of gases. More recently equations of Kolmogorov type have also turned
out to be relevant in option pricing in the setting of certain models for stochastic volatility
and in the pricing of Asian options. The purpose of this paper is to numerically solve
the Cauchy problem, for a general class of second order degenerate parabolic differential
operators of Kolmogorov type with variable coefficients, using a posteriori error estimates
and an algorithm for adaptive weak approximation of stochastic differential equations.
Furthermore, we show how to apply these results in the context of mathematical finance
and option pricing. The approach outlined in this paper circumvents many of the problems
confronted by any deterministic approach based on, for example, a finite-difference
discretization of the partial differential equation in itself. These problems are caused by the
fact that the natural setting for degenerate parabolic differential operators of Kolmogorov
type is that of a Lie group much more involved than the standard Euclidean Lie group of
translations, the latter being relevant in the case of uniformly elliptic parabolic operators.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The simplest form of an operator of Kolmogorov type is the following degenerate parabolic operator in R2n+1,

n∑
j=1

∂2

∂x2j
+

2n∑
j=n+1

xj−n
∂

∂xj
− ∂t . (1.1)

The operator in (1.1) was introduced by Kolmogorov in 1934 in order to describe the density of a system with 2n degrees
of freedom. In particular, here R2n represents the phase space where (x1, . . . , xn) and (xn+1, . . . , x2n) are, respectively, the
velocity and position of the system; see [1]. An area of applied mathematics where operators of Kolmogorov type recently
have turned out to be relevant is that of mathematical finance and option pricing. Degenerate equations of Kolmogorov
type arise naturally in the problem of pricing path-dependent contingent claims referred to as Asian-style derivatives; see
[2–4] and the references therein. In particular, after some manipulations the pricing of a geometric average Asian option in
the standard Black–Scholes model is equivalent to solving the Cauchy problem for the operator (1.1), in this case n = 1, in
R2×[0, T ]with Cauchy data, also called terminal data, defined by the pay-off of the contract. Moreover, the Cauchy problem
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for operators of Kolmogorov type, more general than that stated in (1.1) and with variable coefficients, also appears in the
pricing of general European derivatives in the framework of the stochastic volatilitymodel suggested byHobson and Rogers;
see [3,5].
The purpose of this paper is to apply andwork out, for the backward in time Cauchy problem for a general class of second

order degenerate parabolic partial differential operators of Kolmogorov type, the approach concerning a posteriori error
estimates and adaptive weak approximations of stochastic differential equation due to Szepessy, Tempone and Zouraris,
see [6]. Furthermore, we show how this approach can be applied to problems in mathematical finance and option pricing
where degenerate parabolic operators of Kolmogorov type occur. In particular, we consider operators of the form

L =
1
2

m∑
i,j=1

[σσ ∗]ij(x, t)
∂2

∂xi∂xj
+

m∑
i=1

bi(x, t)
∂

∂xi
+

n∑
i,j=1

cijxi
∂

∂xj
+
∂

∂t
(1.2)

where (x, t) ∈ Rn × R,m is a positive integer satisfyingm ≤ n, σ(x, t) = {σij(x, t)} : Rn × R+ → M(n,m,R),M(n,m,R)
is the set of all n × m matrices with real valued entries and σ ∗ is the transpose of the matrix σ . [σσ ∗]ij(x, t) denotes the
(i, j) entry of the matrix [σσ ∗](x, t). The functions {σij(·, ·)} and {bi(·, ·)} are continuous with bounded derivatives and the
matrix C := {cij} is a matrix of constant real numbers. Note that we are particularly interested in the case m < n. Given
T > 0 we consider the problem{

Lu(x, t) = 0 whenever (x, t) ∈ Rn × (0, T ),
u(x, T ) = g(x) whenever x ∈ Rn, (1.3)

where g is a given function. The problem in (1.3) represents the backward in time Cauchy problem for the operator L with
terminal data g . Concerning structural assumptions on the operator Lwe assume that

A(x, t) = {aij(x, t)}, aij(x, t) := [σσ ∗]ij(x, t), is symmetric, (1.4)

and that there exists a ε ∈ [1,∞) such that

ε−1|ξ |2 ≤

m∑
i,j=1

aij(x, t)ξiξj ≤ ε|ξ |2 whenever (x, t) ∈ Rn+1, ξ ∈ Rm. (1.5)

Note that in (1.5) we are only assuming ellipticity inm out of n spatial directions. Let Ā(x, t) = {āij(x, t)} denote, whenever
(x, t) ∈ Rn+1, the unique m × mmatrix which satisfies Ā(x, t)Ā(x, t) = A(x, t). For (x0, t0) ∈ Rn+1, fixed but arbitrary, we
introduce the differential operators

X0 =
n∑
i,j=1

cijxi
∂

∂xj
+
∂

∂t
, Xi =

1
√
2

m∑
j=1

āij(x0, t0)
∂

∂xj
, i ∈ {1, . . . ,m}, (1.6)

as well as the operator

L̃ = L̃(x0,t0) :=
m∑
i=1

X2i + X0 =
1
2

m∑
i,j=1

aij(x0, t0)
∂2

∂xi∂xj
+

n∑
i,j=1

cijxi
∂

∂xj
+
∂

∂t
. (1.7)

To compensate for the lack of ellipticity, see (1.5), we assume that

L̃ = L̃(x0,t0) is hypoelliptic for every fixed (x0, t0) ∈ Rn × R+. (1.8)

Let Lie(X0, X1, . . . , Xm) denote the Lie algebra generated by the vector fields X0, X1, . . . , Xm. It is well known that (1.8) can
be stated in terms of the following Hörmander condition:

rank Lie(X0, X1, . . . , Xm) = n+ 1 at every point (x, t) ∈ Rn+1. (1.9)

Another condition, equivalent to (1.8) and (1.9), is that there exists a basis for Rn such that the matrix C has the form
∗ C1 0 · · · 0
∗ ∗ C2 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · Cl
∗ ∗ ∗ · · · ∗

 (1.10)

where Cj, for j ∈ {1, . . . , l}, is amj−1×mj matrix of rankmj, 1 ≤ ml ≤ · · · ≤ m1 ≤ m0 andm0+m1+ · · · +ml = nwhile ∗
represents arbitrary matrices with constant entries. For a proof of the equivalence between the conditions stated above we
refer to [7].
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