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a b s t r a c t

We consider a linearization of a numerical scheme for the saturation equation (or porous
medium equation) ∂S

∂t − ∇ · f (S)u − ∇ · k(S)∇S = 0, through first order expansions
of the fractional function f and the inverse of the function K(s) =

∫ s
0 k(τ )dτ , after a

regularization of the porous medium equation. We establish a regularity result for the
Continuous Galerkin Method and a regularity result for the linearized scheme analogous
to the corresponding nonlinear scheme. We then show that the linearized scheme is
consistent with the nonlinear scheme analyzed in a previous work.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider the saturation equation
∂S
∂t
+∇ · (f (S)u)−∇ · (k(S)∇S) = Q (S) onΩ × (0, T0]

(f (S)u− k(S)∇S) · n = q on ∂Ω × [0, T0]
S(x, 0) = S0(x) onΩ,

(1.1)

obtained from modeling a two-phase immiscible flow through a porous medium [1–4]. The set Ω is a bounded domain of
Rn, n = 2, 3. In this work, we have in mind n = 2 andΩ a polygonal domain.
The unknown S is the saturation of the invading phase. The diffusion coefficient k is the conductivity of the medium and

satisfies the following conditions.
k(0) = k(1) = 0, (1.2)

k(ξ) ≥

{c1ξµ if 0 ≤ ξ ≤ α1
c2 if α1 < ξ < α2
c3(1− ξ)µ if α2 ≤ ξ ≤ 1

(1.3)
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where 0 < α1 <
1
2 < α2 < 1, and 0 < µ ≤ 2. We define K by

K(s) =
∫ s

0
k(τ )dτ . (1.4)

The graph of the fractional flow function f is known to have an S-shaped (as a function of the saturation S). So we impose
the following conditions on f .
The function f is twice continuously differentiable in the variable s, and

f ′(0) = f ′(1) = 0. (1.5)
We notice, by [5,6], that if (1.3) and (1.5) hold, then

|f (s2)− f (s1)|2 ≤ C |K(s2)− K(s1)||s2 − s1|. (1.6)
We also notice, through (1.6) and (1.4), that

|f ′(s)| ≤ C
√
k(s). (1.7)

For the purpose of establishing regularity estimates, we assume that k ∈ C1([1, 0]) and f ∈ C2([0, 1]).
As in [5,7,6,8], we assume that the Darcy velocity u is given and has the necessary regularity we need for this analysis.
The main purpose of this paper is to establish regularity estimates for a linearization of the Backward Euler scheme

obtained by fully discretizing a regularization of problem (1.1). These regularity results are then used to show that the
proposed linearized scheme is consistent, in some sense, with the nonlinear scheme considered in [8]. Problem (1.1) has
been studied by many authors under various conditions (see for instance [9–11,6,5,8,12], among others). In the study of
the problem, two difficulties (among others) arise: the nonlinearity and the degeneracy of the problem. Because of the
degeneracies (k(0) = k(1) = 0), Problem (1.1) has often been regularized into a family of nondegenerate problems
whose solutions converge to the solution of (1.1) [6,5,8,10,9,12]. Though some studies (see for instance [13]) bypass the
regularization step, usually, the numerical approximation of the solution of (1.1) is done in three steps: regularization,
Continuous Galerkin Method, and fully discretized Galerkin method. In the last step, some of the works cited above obtain
a nonlinear implicit scheme (backward Euler) which needs to be linearized in some way for a computer implementation.
Often, a Picard iteration is used (see for instance [14] and [15]).
This paper is a continuation of [7] where a method was proposed that linearizes the scheme. We wish to replace the

nonlinear scheme(
Hβ(Un+1h )− Hβ(Unh )

1t
, χ

)
−
(
f (Hβ(Un+1h ))un+1,∇χ

)
+
(
∇Un+1h ,∇χ

)
= 0 (1.8)

analyzed in [8], (where Unh is a discrete approximation of K(S)), by the linear scheme (3.1), proposed in [7], through first
order expansions of the functions f ◦ Hβ and Hβ , where Hβ is defined by (2.15). The Taylor expansions considered are:

Hβ(v2)− Hβ(v1) = (v2 − v1)H ′β(v1)+ O((v2 − v1)2),
and

(f ◦ Hβ)(v2)− (f ◦ Hβ)(v1) = (v2 − v1)(f ◦ Hβ)′(v1)+ O((v2 − v1)2).
The linearized scheme (3.1) and (3.2), below, is obtained from (1.8), by simply discarding the second and higher order terms
in the expansions of Hβ and f ◦ Hβ .
Using one of the regularity results established here, we show that, in fact, if v2 = Un+1h and v1 = Unh , then

O((v2 − v1)2) = O((1t)α), (1.9)
for some α > 0, where the constants intervening in the above estimate are independent of β , the regularization parameter,
h, the space discretization parameter, and1t , the time stepping parameter, though this is true for a balanced choice of β , h,
and1t .
The remainder of the paper is structured as follow.
In Section 2, we state some preliminary results established in previous works.
In Section 3, we state and prove our main results: We prove a new regularity result for the Continuous Galerkin Method

and use it to establish the consistency of the linearized scheme. We also prove, for the linearized scheme, a regularity
result analogue to some regularity results for the Continuous Galerkin Method and the fully discretized nonlinear scheme
established in [8].
Notations. Finally, we set additional notation which will be used throughout the remainder of this paper. We define
(f , g) := (f , g)Ω :=

∫
Ω
fgdx when this has a meaning. The notation ‖f ‖Lp := ‖f ‖Lp(Ω) is used for the standard Lebesgue

norm of a measurable function, when this quantity is finite. Similarly, we denote by ‖f ‖Lp(Lq) := ‖f ‖Lp(0,T ,Lq(Ω)) the mixed
Lebesgue norm for f . For a vector v = (v1, v2, . . . , vk), by ‖v‖L2 , we mean ‖v‖(L2(Ω))k . We write Vht :=

∂Vh
∂t , the partial

derivative of Vh with respect to t . Similarly, Vhtt designates the second order partial derivative of Vh with respect to t . We
use C , c , to denote constants which may change from line, but which are independent of the parameters β , h and1t , unless
otherwise explicitly specified. We also denote by σ , σ1, σ2, . . . etc, constants we can control thanks to the Arithmetic-
Geometric Inequality.
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