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1. Introduction

The augmented system is of the form

(5 0)()=(2): i

where A € R™™ is a symmetric and positive definite matrix, B € R™" (m > n) is a matrix of full column rank, and
BT is the transpose of matrix B, b € R™ and ¢ € R" are two given vectors. This class of problems appears in many
different fields of the scientific computing and engineering applications, such as the constrained optimization [1-3], the
finite element method or the finite volume method for solving the Navier-Stokes equations [4-8], and the constrained
least squares problems and the generalized least squares problems [9,10], etc. There have been a great deal of iterative
methods for solving the augmented system (1.1). Among them, the preconditioned iterative methods were provided firstly
by Santos and co-works in [11]. Several variants of the SOR method and the preconditioned conjugate gradient methods
were proposed for solving the general augmented system (1.1) arising from the generalized least squares problems by Yuan
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and co-workers in [9,10]. The preconditioned MINRES method, the QMR method, the preconditioned GMRES method, the
SOR-like methods and the generalized SOR-like methods were investigated respectively for solving the augmented system
arising from finite element approximations to the Stokes equations in [12,8,1,13-15]. Recently, an iterative method with
variable relaxation parameters [16,17], the generalized successive overrelaxation methods [18,19,10], the parameterized
inexact Uzawa methods [20-23] and the fast Uzawa algorithms [24,25] were studied for solving the augmented systems
and the generalized saddle point problems, respectively.

In this paper, we consider a new approach for solving the augmented system (1.1). Since the second diagonal block matrix
is null, we introduce a full-rank matrix Q with small parameter p € [0, 1] and construct the new iterative methods by using
the modified homotopy perturbation method [26]. The sufficient and necessary conditions for guaranteeing its convergence
are derived. Four kinds of perturbation cases of the new approach are studied respectively. Finally, four special choices of the
full-rank matrix Q are considered for solving problem (1.1). Numerical experiments show that this method is more simple
and effective.

The outline of this paper is as follows. In Section 2, we replace the null block in problem (1.1) by some nonsingular matrix
(1 —p)xQ so that we can apply the modified homotopy perturbation method to the small parameter p. Moreover, we study
the convergence of the new iterative methods for four special cases. In Section 3, we make four special choices for Q and give
some numerical experiments for our algorithms. The numerical experiments show that our methods work well for problem
(1.1) arising from real problems. Finally, the conclusions are made in Section 4.

2. The construction of iterative methods

In order to find the solution of problem (1.1), we choose the following four different auxiliary systems.
2.1. Case one

The first auxiliary system is as follows

A B X\ _ (b
(& a-ne) 6)= ) &

where o # 0 is the accelerating parameter, Q € R"™™" is a given matrix and needs to be non-singular and “easy” to invert,
p € [0, 1] is an imbedding parameter. Hence, it is obvious that when p = 1, problem (1.1) is a degenerated form of problem
(2.1).

The changing process of p from 0 to 1 is just that of the solution of problem (2.1) from the solution of problem (1.1). In
topology, this is called deformation. Applying the homotopy perturbation technique [27], due to the fact that0 < p < 1
can be considered as a small parameter, we can assume that the solution of problem (2.1) can be expressed as a series

inp
; _ X0 X1 5 [ X2 0 [ Xn
G) B (Y0> TP <J’1> +p <Y2) tootp <yn> T 2.2)

when p — 1, problem (2.1) corresponds to problem (1.1), and solution (2.2) becomes the approximate solution of problem
(1.1), namely

() =1m )= ()= () + G oo i)+ o)

Substituting (2.2) into problem (2.1), and equating the coefficients of like powers of p, we obtain the following systems
0 A B\ (x) _
“\B" Q) \y
1. A B X1\ _ 0
P\t w) \yi) T \earo)
p2 . A B X2 _
“\B" Q) \y2) ™

k. (A B AN 0
P B' aQ Vo) \aQy-1)’

From (2.4), we can see that if «Q — BTA~'B is a nonsingular matrix, then (xo, ¥o)™ ~ (X, yx)T can be solved respectively
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