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a b s t r a c t

In this paper we present a very efficient Hermite subdivision scheme, based on rational
functions, and outline its potential applications, with special emphasis on the construction
of cubic-like B-splines — well suited for the design of constrained curves and surfaces.
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1. Introduction

Due to their flexibility, their simple implementation and (often) their low computational cost, subdivision schemes are a
very popular tool for representation and manipulation of curves and surfaces. In the last two decades, several interpolatory
and non-interpolatory subdivision schemes have been proposed by many authors (see e.g. the survey paper [1]). More
recently, the so-called Hermite C1 interpolatory schemes (HC1) have been analyzed. Among them we recall the relevant
subset ofMerrien schemes, [2–12]. Perhaps, themain appeal of theHC1 schemes (as well as any Hermite scheme) lies in their
localness. Indeed, in the commonly accepted analytic interpretation, they are seen as the evaluation of aHermite interpolant,
taken from some suitable 4D space, sayP , and of its derivative at a given point, usually themid point.1Many andwell known
are the advantages of local versus global formulas: here we limit ourselves to put in evidence the two more significant
ones for this paper. The first concerns the construction of C1 piecewise curves or surfaces, which is trivial provided that
suitable Hermite conditions are assigned at the common points of the 1D or the 2D grid. The second concerns a possible
easier local control of the shape. Indeed, if from one side it is now accepted that any efficient tool for design, interpolation,
approximation etc. must give the user some control on the form of the curve or surface, on the other it is well known to any
researcher working in this field how difficult it is to manage global shape constraints. The papers on the HC1 schemes cited
in the references are all devoted to detailing these aspects.
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1 Such an interpretation does not imply in general that the limit function produced by the subdivision scheme belongs to P . This is of course the case
when P is the space of cubic polynomials, but not for other common choices (rational functions, exponential functions, etc.) at least in the simplest
stationary and uniform version of the HC1 scheme.
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Let us turn our attention to the efficiency and smoothness ofHC1 schemes. The efficiency claimed at the beginning of this
section is completely achieved when stationary and uniform schemes are used. The evaluation of a cubic polynomial at mid
point via the de Casteljau algorithm gives the most famous example (note, in passing that the de Casteljau algorithm gives
also the derivative at mid point [13] and thus it can be viewed as the simplest implementation of the simplest HC1 scheme).
Stationary and uniform HC1 schemes also allow imposition of shape constraints (see [10,6,7] and references therein) but
their simplicity has as a counterpart a low degree of smoothness of the limit, which is of course C1, but typically exhibits
a ‘‘fractal’’ behavior in the graph of the first derivative. To obtain a higher smoothness, still retaining shape preservation,
requires non-uniform and/or non-stationary approaches, which is often quite costly.
The geometric construction proposed in [14] goes in this direction. However, surprisingly and fortunately, in the effective

implementation of the theoretical results of [14], using theHermite interpolant froma suitable subspace of rational functions
– which will be referred to as the rational Hermite scheme – we obtained a scheme with the following properties:
- at any level of subdivision the scheme can be described in terms of a piecewise rational function (actually piecewise

cubic except in the first and in the last subinterval) of class C2 in the given (closed) interval;
- the scheme converges to a C2 function in the open interval;
- each subdivision step can be described by three bidiagonal and totally positive matrices applied to the ‘‘generalized’’

Bézier control points of the above mentioned rational function;
- the scheme coincides with the de Casteljau one with the only exception of the first and the last subinterval for each

level, or in other words, is stationary and uniform ‘‘almost everywhere’’.
The positive consequences of these properties are evident. The piecewise function representation cited in the first item

allows us to use the general results of [15] and [16] and construct both a Bernstein–Bézier representation (for a single
interval) and a classical C2 B-spline representation (when more intervals are connected in the construction of curves and
surfaces). Second, now C2 continuity and shape preservation can be achieved simultaneously, in contrast to the usual C1
reachedwithHC1 shape preserving schemes. Third, since the bidiagonal and totally positivematrices describe corner cutting
steps, the scheme is inherently shape preserving in the sense that the shape of the initial control polygon is maintained
through the subdivisions. In other words, we do not have to worry about the set-up of level and interval dependent
shape constraints. Clearly, the advantages are overwhelming in the construction of shape preserving surfaces. Finally, the
computational cost is the lowest possible, being equivalent to that of the cubic de Casteljau algorithm. Again, the advantages
are more important for surface construction.
Summarizing, with the rational Hermite schemewe have at our disposal a tool which provides amathematical object with

shape preserving properties and high smoothness at the same computational cost and equivalent to cubic polynomials. In
this paper we exploit some useful potential applications of this powerful scheme including the description of new 4D spaces
possessing shape parameters and the construction of the corresponding B-splines. Due to space limitations, we have not
gone deep into other possible interesting theoretical aspects but concentrated on an outline of the main applications. For
the same reason, we have provided a very limited number of numerical and graphical examples.
The paper is divided into six sections, which essentially reflect the above comments. In the next one, after recalling

some basic material from the references in order to make the paper self-contained, we present a class of interesting 4D
spaces of piecewise rational functions, possessing shape parameters, defined by means of (some steps of) the subdivision
scheme and we describe the construction of generalized Bernstein bases for them. In Section 3 we describe the geometric
construction of the corresponding generalized B-spline basis, both in the 1D and in the 2D (tensor-product) case. Sections 4
and 5 are devoted to bivariate extensions of the considered scheme. The construction of shape preserving composite C1
tensor-product surfaces, interpolating Hermite data at grid points, is presented in Section 4 while Section 5 is dedicated to
the equally important construction of C1 Boolean sum surfaces, which can be used to interpolate a network of arbitrary given
curves. Finally, Section 6 contains final comments and remarks.

2. Rational Hermite subdivision schemes and related spaces

In this section we present the basic concepts related to the rational Hermite subdivision scheme (rH for short) and to
suitable spaces of functions which can be constructed from it. Its content is in turn subdivided into three subsections. The
first two, which are at first sight uncorrelated, are devoted to the basic properties of certain 4D spaces and to a concise
description of the subdivision scheme. The third clarifies the connection between the previous ones discussing structure,
properties and a suitable basis of a class of 4D spaces which can be constructed by means of some steps of the proposed
subdivision scheme.

2.1. Generalized cubics

In this section we recall some necessary material on Bernstein-like bases of suitable 4D spaces. Given a real function f ,2
we denote with ḟ the derivative with respect to the (local) variable t and with f ′ the derivative with respect to the (global)

2 Throughout the paper, bold will be used to denote functions, in contrast with non-bold which will be used to denote points or sequences of points.
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