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a b s t r a c t

Error analysis of the usual method to evaluate rational Bézier surfaces is performed. The
corresponding running error analysis is also carried out and the sharpness of our running
error bounds is shown. We also modify the evaluation algorithm to include such error
bounds without increasing significantly its computational cost.
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1. Introduction

The evaluation of rational Bézier surfaces is an important task in the field of GeometricModeling (cf. [1] and [2]) aswell as
in other fields such as finite elements (cf. [3] and [4]). The usual method to evaluate rational Bézier surfaces uses the projec-
tion operatorΠ through the Bernstein basis. In [5] it was proved that this basis presents optimal stability properties and the
advantages of this algorithm over other evaluation algorithms of nested type andwith lower complexity were shown. How-
ever, in some circumstances overflow or underflow problems can appear and an alternative algorithm was proposed in [5].
In this paper we perform a forward error analysis of the usual method to evaluate rational Bézier surfaces. As far as we

know, there is no such error analysis in the literature. In fact, the error analysis in the simpler case of tensor product surfaces
has been performed very recently (see [6]), and it also includes the running error analysis. Another main contribution of this
paper is the running error analysis of the usual method to evaluate rational surfaces, providing a posteriori error bounds.
We also modify the algorithm to include an estimation of such error bounds at the same time as the evaluation without
increasing significantly its computational cost. The error bound obtained with the running error analysis will be more
realistic than the ‘‘a priori’’ bounds of the algorithms. We also include illustrative numerical experiments confirming the
theoretical results and the accuracy of the error bounds.
In Section 2 we perform the forward error analysis of the algorithm and in Section 3 the running error analysis. Finally,

in Section 4 we present some numerical experiments and the conclusions.
Let us now introduce some basic notations. Let

F(x, y) =
m∑
i=0

n∑
j=0

fij
wij bmi (x) b

n
j (y)

m∑
i=0

n∑
j=0
wij bmi (x) b

n
j (y)

, (x, y) ∈ [0, 1] × [0, 1], (1)
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be a rational Bézier function with (fij)
0≤j≤n
0≤i≤m a sequence in R and (wij)

0≤j≤n
0≤i≤m a sequence formed by strictly positive

weights.
Let us now introduce some standard notations in error analysis. Given a ∈ R, the computed element in floating point

arithmeticwill be denoted by either fl(a) or by â. As usual, to investigate the effect of rounding errorswe use either themodel
fl(a op b) = (a op b) (1+ δ), |δ| ≤ u, (2)

or the model

fl(a op b) =
a op b
1+ δ

, |δ| ≤ u, (3)

with u the unit roundoff and op any of the elementary operations+,−,×, / (see pages 44–45 of [7] for more details). Given
k ∈ N0 such that ku < 1, let us define

γk :=
ku
1− ku

= ku+ O(u2). (4)

In our error analysis we shall deal with quantities satisfying the condition that their absolute values are bounded above by
γk. Following [7] we denote by θk such quantities and take into account that, by Lemmas 3.3 and 3.1 of [7], the following
properties hold:

(1+ θk) (1+ θj) = 1+ θk+j, (5)

1+ θk
1+ θj

=

{
1+ θk+j, j ≤ k,
1+ θk+2j, j > k. (6)

2. Error analysis of the evaluation algorithm

In CAGD the usual algorithm for evaluating a rational function (1) considers the auxiliary vectorial function

F̃(x, y) =
m∑
i=0

n∑
j=0

(
wij fij
wij

)
bmi (x) b

n
j (y).

This algorithm can be written explicitly in the following way:

Algorithm 1. Let F(x, y) be the rational function given by (1) and (x, y) be a fixed point in [0, 1]× [0, 1]. Then, performing
1. For i = 0 : m

For j = 0 : n
f 00ij = wij fij, w00ij = wij

End-For
End-For

2. For i = 0 : m
For r = 1 : n
For j = 0 : (n− r)
f 0rij = (1−y) f

0,r−1
ij +y f 0,r−1i,j+1 , w0rij = (1−y) w

0,r−1
ij +yw0,r−1i,j+1

End-For
End-For
End-For

3. For r = 1 : m
For i = 0 : (m− r)
f rni0 = (1− x) f

r−1,n
i0 + x f r−1,ni+1,0 , wrni0 = (1− x) w

r−1,n
i0 + xwr−1,ni+1,0

End-For
End-For

4. output = fmn00
wmn00

we have output = F(x, y).

The following result states the forward error analysis of this algorithm.

Theorem 1. Let us consider a basis

b :=

 wij bmi (x) b
n
j (y)

m∑
i=0

n∑
j=0
wij bmi (x) b

n
j (y)


0≤j≤n

0≤i≤m

(7)
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