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a b s t r a c t

Multilevel methods are popular for the solution of well-posed problems, such as certain
boundary value problems for partial differential equations and Fredholm integral equations
of the secondkind.However, little is knownabout the behavior ofmultilevelmethodswhen
applied to the solution of linear ill-posed problems, such as Fredholm integral equations
of the first kind, with a right-hand side that is contaminated by error. This paper shows
that cascadic multilevel methods with a conjugate gradient-type method as basic iterative
scheme are regularizationmethods. The iterations are terminated by a stopping rule based
on the discrepancy principle.
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1. Introduction

Bill Gragg’s many contributions to scientific computing include work on ill-posed problems [1], iterative solution of
symmetric, possibly indefinite linear systems of equations [2], and Toeplitz matrices [3,4]. This paper is concerned with all
these topics.
Many problems in science and engineering can be formulated as a Fredholm integral equation of the first kind,∫

Ω

κ(t, s)x(s)ds = b(t), t ∈ Ω. (1)

Here Ω denotes a compact Jordan measurable subset of R × · · · × R, and the kernel κ and right-hand side b are smooth
functions on Ω × Ω and Ω , respectively. The computation of the solution x of (1) is an ill-posed problem because (i) the
integral equation might not have a solution, (ii) the solution might not be unique, and (iii) the solution – if it exists and is
unique – does not depend continuously on the right-hand side. The computation of a meaningful approximate solution of
(1) in finite precision arithmetic therefore is delicate; see, e.g., [5] or [6] for discussions on the solution of ill-posed problems.
In the present paper, we assume that (1) is consistent and has a solution in a Hilbert spaceXwith norm ‖ · ‖. For instance,
Xmay be L2(Ω). Often one is interested in determining the unique solution of minimal norm.We denote this solution by x̂.
In applications, generally, not b, but a corrupted version, which we denote by bδ , is available. We assume that a constant

δ > 0 is known, such that the inequality

‖bδ − b‖ ≤ δ (2)
holds. The difference bδ − bmay, for instance, stem from measurement errors and is referred to as ‘‘noise’’.
Our task is to determine an approximate solution xδ of∫

Ω

κ(t, s)x(s)ds = bδ(t), t ∈ Ω, (3)

such that xδ provides an accurate approximation of x̂. Eq. (3) is not required to be consistent.
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In operator notation, we express (1) and (3) as

Ax = b (4)

and

Ax = bδ, (5)

respectively. The operator A : X→ Y is compact, whereX andY are Hilbert spaces. Thus, A has an unbounded inverse and
may be singular. The right-hand side b is assumed to be in the range of A, denoted byR(A), but bδ generally is not.
We seek to determine an approximation of the minimal-norm solution x̂ of (4) by first replacing the operator A in (5) by

an operator Areg that approximates A and has a bounded inverse on Y, and then solving the modified equation so obtained,

Aregx = bδ. (6)

The replacement of A by Areg is referred to as regularization and Areg as a regularized operator. We would like to choose Areg
so that the solution xδ of (6) is a meaningful approximation of x̂.
One of the most popular regularization methods is Tikhonov regularization, which in its simplest form is defined by

(A∗A+ λI)x = A∗bδ, (7)

i.e., (Areg)−1 = (A∗A + λI)−1A∗. Here I is the identity operator, λ > 0 is a regularization parameter, and A∗ denotes the
adjoint of A. The latter determines how sensitive the solution xδ of (7) is to perturbations in the right-hand side bδ and how
close xδ is to the solution x̂ of (4); see, e.g., [5,6] for discussions on Tikhonov regularization.
For any fixed λ > 0, Eq. (7) is a Fredholm integral equation of the second kind and, therefore, the computation of its

solution is a well-posed problem. Several two-level and multilevel methods for the solution of the Tikhonov equation (7)
have been described in the literature; see, e.g., [7–11]. For a large number of ill-posed problems, these methods determine
accurate approximations of the solution of the Tikhonov equation (7) faster than standard (one-level) iterative methods.
The cascadic multilevel method of the present paper is applied to the unregularized problem (5). Regularization is

achieved by restricting the number of iterations on each level using the discrepancy principle, defined in Section 2. Thus,
the operator Areg associated with the cascadic multilevel method is defined implicitly. For instance, let the basic iterative
scheme be CGNR (the conjugate gradient method applied to the normal equations). We apply CGNR on the coarsest
discretization level until the computed approximate solution satisfies the discrepancy principle. Then the coarsest-level
solution is prolongated to the next finer discretization level and iterations with CGNR are carried out on this level until the
computed approximate solution satisfies the discrepancy principle. The computations are continued in this manner until an
approximate solution on the finest discretization level has been found that satisfies the discrepancy principle. We remark
that if the iterations are not terminated sufficiently early, then the error in bδ may propagate to the computed approximate
solution and render the latter a useless approximation of x̂.We establish in Section 3 that the CGNR-based cascadicmultilevel
method is a regularization method in a well-defined sense.
The application of CGNR as basic iterative method in themultilevel method is appropriate when A is not self-adjoint. The

computed iterates live inR(A∗) and therefore are orthogonal toN (A), the null space of A.
When A is self-adjoint, the computational work often can be reduced by using an iterative method of conjugate gradient

(CG) type different from CGNR as basic iterative method. Section 3 also describes multilevel methods for self-adjoint ill-
posed problems based on a suitable minimal residual method.
The application of multigrid methods directly to the unregularized problem (5) recently also has been proposed by

Donatello and Serra-Capizzano [12], who with computed examples show the promise of this approach. The regularization
properties of the multigrid methods used are not analyzed in [12].
Cascadic multilevel methods typically are able to determine an approximate solution of (5) that satisfies the discrepancy

principle with less arithmetic work than application of the CG-type method, which is used for the basic iterations, on
the finest level only. We refer to the latter method as a one-level CG-type method, or simply as a CG-type method. A
cascadic Landweber-based iterativemethod for nonlinear ill-posed problems has been analyzed by Scherzer [13]. Numerical
examples reported in [13] show this method to require many iterations.
Multilevelmethods have formany years been applied successfully to the solution ofwell-posed boundary value problems

for partial differential equations; see, e.g., [14] and the references therein. In particular, a CG-based cascadic multigrid
method has been analyzed in [15]. However, the design of multilevel methods for this kind of problem differs significantly
from multilevel methods for ill-posed problems. This depends on that highly oscillatory eigenfunctions, which need to
be damped, in the former problems are associated with eigenvalues of large magnitude, while they are associated with
eigenvalues of small magnitude for the latter problems.
This paper is organized as follows. Section 2 reviews CG-type methods and the discrepancy principle. In particular, we

discuss the regularization properties of CG-typemethods. Cascadic multilevel methods based on different CG-typemethods
are described in Section 3, where also regularization properties of these methods are shown. Section 4 presents a few
computed examples and concluding remarks can be found in Section 5.
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