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a b s t r a c t

The classical way of solving the time-harmonic linear acousto-elastic wave problem
is to discretize the equations with finite elements or finite differences. This approach
leads to large-scale indefinite complex-valued linear systems. For these kinds of systems,
it is difficult to construct efficient iterative solution methods. That is why we use an
alternative approach and solve the time-harmonic problem by controlling the solution of
the corresponding time dependent wave equation.
In this paper, we use an unsymmetric formulation, where fluid-structure interaction

is modeled as a coupling between pressure and displacement. The coupled problem is
discretized in space domain with spectral elements and in time domain with central finite
differences. After discretization, exact controllability problem is reformulated as a least-
squares problem, which is solved by the conjugate gradient method.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic waves are small oscillations of pressure, which are associatedwith local motions of particles in fluid domainΩf .
The linear theory of elasticity models mechanical properties in structureΩs assuming small deformations. Acousto-elastic
interaction between these twomedia constitutes a coupled problem. Several phenomena, such as seismicwaves in the earth
and ultrasonic waves used to detect flaws in materials, can be described by an acousto-elastic model. Two approaches, in
which the displacement is solved in the elastic structure, predominate in modeling the interaction between acoustic and
elastic waves. Expressing the acoustic wave equation by the velocity potential results in a symmetric system of equations
(see, e.g., [1–4]), while using the pressure in the fluid domain leads to an unsymmetric formulation (see, e.g., [5–8]).
In this paper, we present the acousto-elastic interaction between pressure and displacement, and thereby concentrate

on the unsymmetric approach. We formulate the time-harmonic acousto-elastic interaction as an exact controllability
problem [9] via the corresponding time dependent system. The time dependent problem is discretized in space domainwith
the spectral elementmethod (SEM) and in time domainwith the second-order central finite differences. The combination of
these discretization methods is well known with wave equations (see, e.g., [10]). The methods related to spectral elements
are studied in the context of the time dependent acousto-elastic problem with second-order time-stepping schemes; see
for instance Refs. [11,12,6].
After discretization, we solve the control problem by a conjugate gradient (CG) algorithm which is related to that

developed in [13] for the acoustic wave equation. If an unpreconditioned CG algorithm is used, the number of iterations
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Fig. 1. The domainΩ is divided into the solid partΩs and the fluid partΩf .

grows rapidly with the order of spectral element [14]. That is why we use a modification of Kickinger’s [15] algebraic
multigrid (AMG), introduced in [16], for preconditioning the conjugate gradient algorithm.
The rest of this paper is organized as follows. First, the mathematical model is presented in Section 2. Then, we discretize

the coupled problem in space domain with spectral elements in Section 3. For time discretization we use central finite
differences in Section 4. In Section 5, we present the control problem and the preconditioned conjugate gradient algorithm.
Finally, we show some numerical experiments in Section 6.

2. Mathematical model

We consider the use of a control algorithm to solve the time-harmonic acousto-elastic problem in the domainΩ ⊂ R2,
which is divided into the solid partΩs and the fluid partΩf by the interfaceΓi (see Fig. 1). Instead of solving directly the time-
harmonic equation, we return to the corresponding time dependent equation (see, e.g., [17,10]) and look for time-periodic
solution. The convergence is accelerated with a control technique by representing the original time-harmonic equation as
an exact controllability problem [18,19] for the time dependent wave equation
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where f , yext, f, and gext are the source terms. Length of the time interval is marked as T , pf denotes the pressure, and
us = (us1,us2)T is the displacement field depending on the spatial variable x = (x1, x2)T ∈ R2. Coefficients ρf (x) and ρs(x)
represent the densities of media in domains Ωf and Ωs, respectively, and c(x) is the speed of sound in fluid domain. The
stress tensor is expressed as σ(us) = ρs(x)

(
cp(x)2 − 2cs(x)2

)
(∇ · us)I+ 2ρs(x)cs(x)2ε(us)with the speed of the pressure

wave cp(x), the speed of the shear wave cs(x), the identity matrix I, and the linearized strain tensor ε = 1
2
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)
.

The outward normal vectors to domainsΩf andΩs are marked as nf = (nf 1, nf 2)T and ns = (ns1, ns2)T.
The fluid domain is bounded by Γf = Γ0f

⋃
Γef
⋃
Γi, and Γs = Γ0s

⋃
Γes

⋃
Γi constitutes the boundary for the solid

domainΩs. The boundaries Γ0f and Γ0s are assumed to be rigid, whereas on the artificial boundaries Γef and Γes we impose
the conventional first-order absorbing boundary conditions [20,21], where B is a symmetric positive definite 2× 2-matrix
defined by
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In addition to the system (1)–(8), we take into account the initial conditions e = (e0, e1)T such that e0 = (e0f , e0s)T and
e1 = (e1f , e1s)T, and

pf (x, 0) = e0f ,
∂pf
∂t
(x, 0) = e1f , inΩf , (9)
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