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a b s t r a c t

In this paper, we use a semi-discrete and a padé approximation method to propose a
new difference scheme for solving convection–diffusion problems. The truncation error
of the difference scheme is O(h4 + τ 5). It is shown through analysis that the scheme is
unconditionally stable. Numerical experiments are conducted to test its high accuracy and
to compare it with Crank–Nicolson method.
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1. Introduction

Consider the convection–diffusion equation

∂u
∂t
+ ε

∂u
∂x
= γ

∂2u
∂x2

, 0 < x < 1, t > 0 (1.1)

subject to the initial condition

u(x, 0) = g(x), 0 ≤ x ≤ 1

and boundary conditions

u(0, t) = 0, t > 0.
u(1, t) = 0, t > 0,

where the parameter γ is the viscosity coefficient and ε is the phase speed, and both are assumed to be positive. g is a given
function of sufficient smoothness. This equation may be seen in computational hydraulics and fluid dynamics modeling
convection–diffusion of quantities such as mass, heat, energy, vorticity, etc [1].
There has been much work on computing a finite difference approximation solution of equation (1.1), see [2–4]. We

focus our attention on a method based on the high-order compact (HOC) finite difference discretization of equation (1.1)
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only with respect to the space variable. This type of discretization yields a system of ordinary differential equation. The
solution of this system requires the computation of eτA

−1By for some vector y, where τ is the time step-size, A and B are
large Toeplitz matrixes. There are various methods to compute an approximation of eτA

−1By. In [5–7,12], some approaches
based on the Krylov subspace method were proposed. The restrictive Taylor’s approximation method has been presented
in [8,12]. In most of the cases, the accuracy of the difference schemes constructed by using the above methods is second
order in time direction and second or fourth order in space direction. In this paper,we use padé approximation method
to give an expression to compute the value of eτA

−1B. So we get a new difference scheme for solving convection–diffusion
equation (1.1) and the truncation error is O(τ 5 + h4). Then the numerical results of our difference scheme for computing
the approximate solution of Eq. (1.1) at some given time levels are compared with that of Crank–Nicolson scheme.
The present paper is organized as follows. In Section 2, we define the difference scheme and discuss the accuracy. In

Section 3, we do stability analysis. Some numerical examples are presented in Section 4 and concluding remarks are given
in Section 5.

2. Proposition of the difference scheme

We subdivide the interval 0 ≤ x ≤ 1 into n equal subintervals by the grid points xi = ih, i = 0(1)n, where h = 1/n,(n is
a positive integer). The mesh function u(ih, kτ) is written as uki at grid point (ih, kτ).
We start by examining the one-dimensional steady convection equation

− γ
d2u
dx2
+ ε

du
dx
= f , (2.1)

where f is a function of x. Using the techniques outlined in [9,10], it is easy to derive a three-point fourth-order compact
scheme for Eq. (2.1) as

−

(
γ +

ε2h2

12γ

)
δ2xui + εδxui =

(
1+

h2

12
(δ2x −

ε

γ
δx)

)
fi + O(h4), (2.2)

where δ2x and δx are the second-order and first-order center difference operators.
For convenience, we define two difference operators as follows

Lx = 1+
h2

12
(δ2x −

ε

γ
δx), Ax = −

(
γ +

ε2h2

12γ

)
δ2x + εδx.

Eq. (2.2) can then be formulated symbolically as

L−1x Axui = fi + O(h
4). (2.3)

A fourth-order semi-discrete approximation to the unsteady convection–diffusion equation in (1.1) can be obtained by
replacing f with− ∂u

∂t in (2.3)

L−1x Axu
k
i = −

∂uki
∂t
+ O(h4). (2.4)

Let

vki =
∂uki
∂t
. (2.5)

Then we have

L−1x Axu
k
i = −v

k
i + O(h

4). (2.6)

Neglecting the high-order term O(h4) of (2.6) and then rewriting it as follows(
1
12
+
hε
24γ

)
vki−1 +

5
6
vki +

(
1
12
−
hε
24γ

)
vki+1

=

(
γ

h2
+

ε2

12γ
+
ε

2h

)
uki−1 +

(
−
2γ
h2
−
ε2

6γ

)
uki +

(
γ

h2
+

ε2

12γ
−
ε

2h

)
uki+1. (2.7)

Along time level t , we denotew(xi, t) bywi(t), wherew is u or v.
In matrix notation, (2.7) can be written as:{

AV(t) = BU(t),
U(0) = U0.

(2.8)
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