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a b s t r a c t

The boundary node method (BNM) exploits the dimensionality of the boundary
integral equation (BIE) and the meshless attribute of the moving least-square (MLS)
approximations. However, since MLS shape functions lack the property of a delta function,
it is difficult to exactly satisfy boundary conditions in BNM. Besides, the system matrices
of BNM are non-symmetric.
A Galerkin boundary node method (GBNM) is proposed in this paper for solving

boundary value problems. In this approach, an equivalent variational form of a BIE is used
for representing the governing equation, and the trial and test functions of the variational
formulation are generated by the MLS approximation. As a result, boundary conditions
can be implemented accurately and the system matrices are symmetric. Total details
of numerical implementation and error analysis are given for a general BIE. Taking the
Dirichlet problem of Laplace equation as an example, we set up a framework for error
estimates of GBNM. Some numerical examples are also given to demonstrate the efficacity
of the method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the meshless (or meshfree) methods have attached much attention for solving boundary value
problems [1,2]. The main feature of this type of method is the absence of an explicit mesh, and the approximate solutions
are constructed entirely based on a cluster of scattered nodes. Althoughmany types of meshless methods have been already
proposed, these methods can be divided into two categories: the boundary type and the domain type. Several domain type
meshless methods, such as the element free Galerkin method (EFGM) [3], the reproducing kernel particle method [4], the
moving least-square reproducing kernel method [5,6], the finite point method [7] and the h–p meshless method [8] have
achieved remarkable progress in solving a wide range of boundary value problems, and their mathematical backgrounds
were investigated.
Boundary integral equations (BIEs) have beenwidely used for the solution of boundary value problems in potential theory

and engineering. Based on coupling BIEs and themoving least-squares (MLS) approach [9,10],Mukherjee andMukherjee [11]
proposed a boundary type meshless method which they call the boundary node method (BNM). BNM requires only a
nodal structure on the bounding surface of a body for approximation of boundary unknowns. Hence it is an attractive
computational technique for linear problems compared with the domain type meshless methods. However, since the MLS
approximation lacks the delta function property, BNM cannot exactly satisfy boundary conditions. And the strategy used in
BNMto impose boundary conditions doubles the number of systemequations. Xie et al. [12] proposed a radial boundarynode
method (RBNM) to overcome this difficulty by using radial basis functions instead of the MLS to construct the interpolation
functions. Although RBNMhas been applied to the linear elasticity problems, the accuracy of numerical results is affected by
the shape parameters of radial basis functions (e.g. parameters in MQ and Gaussians basis functions [13]), and the optimal
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values of these parameters are still not determined theoretically. Moreover, as BNM, the systemmatrices of RBNM are non-
symmetric, and the theoretical basis is just being studied and far from completion.
In this paper we present a Galerkin boundary node method (GBNM), which based on an equivalent variational form of a

boundary integral formulation for the governing partial differential equation. The key ideas in GBNM are:
1. The MLS approximation is implemented to construct the trial and test functions of the variational form by a cluster of
nodes instead of elements. Thus, the elements division in the boundary element method (BEM) can be avoided.

2. The ‘stiffness’matrices are symmetric, which provides an added advantage in couplingGBNMwith finite elementmethod
(FEM) [14] or other established meshless methods such as EFGM. This coupled technique is especially suited for the
problems with an unbounded domain.

3. Although the shape functions of MLS approximation lack the delta function property, boundary conditions can be
enforced by the variational formulation. Thus the implementation of boundary conditions in this method is much easier
than that in other meshless methods such as in BNM or EFGM, in which the MLS is also introduced.

The rest of this paper is outlined as follows. In Section 2, we introduce some preliminaries to be used later. Section 3 gives
a brief description of the MLS approximation and deduces its error estimates. Then, a detailed numerical implementation of
GBNM is described and the theoretical analysis of this method in Sobolev spaces is provided in the next section. Section 5
provides some numerical tests on theoretical results of the proposed meshless method. Finally, the conclusion is presented
in Section 6.

2. Preliminary

LetΩ be an open bounded domain in R2 with boundary Γ , the complement of Ω̄ = Ω + Γ is denoted byΩ ′. A generic
point in R2 is denoted by x = (x1, x2) or y = (y1, y2).
For any x ∈ Γ , assume that the influence domain of x isR(x)with radius r(x), thenR (x) is a piece of the boundary and

can be represented by a curvilinear co-ordinate (here the arc length) s, i.e.,

R (x(s)) :=
{
y
(
s̃
)
∈ Γ :

∣∣s̃− s∣∣ ≤ r(x)} , (1)
where s̃ is the curvilinear coordinate of the boundary point y.
Obviously, if Γ is a C`Γ curve, it is true thatR(x) is a C`Γ curve, thus ∂mx(s)/∂sm is bounded provided thatm ≤ `Γ .
Let xi ∈ Γ (1 ≤ i ≤ N) be a set of points which are called boundary nodes. On R (x), the curvilinear co-ordinate of

xi ∈ R (x) is denoted by si. Besides, assume that there have κ(x) boundary nodes that lie onR(x). Then, we use the notation
I1, I2, . . . , Iκ to express the global sequence number of these nodes, and define ∧(x) := {I1, I2, . . . , Iκ}.
From (1) the influence domain of xi is

Ri := R (xi(s)) =
{
y
(
s̃
)
∈ Γ :

∣∣s̃− s∣∣ ≤ r (xi)} , 1 ≤ i ≤ N. (2)

It is worth noting that the union of {Ri}Ni=1 should be a finite open covering of Γ , i.e., Γ ⊂
⋃N
i=1Ri.

Besides, we use

Ri := {x ∈ Γ : xi ∈ R(x)} , 1 ≤ i ≤ N, (3)
to denote the set of boundary points whose influence domain including the boundary node xi. For a different boundary point
x, the influence domainR(x) varies from point to point, henceRi ≡ Ri if and only if r(x) is a constant for any x ∈ Γ .
For convenience, we suppose that τ is real and we denote by Hτ (Γ ) the Sobolev spaces as well as their interpolation

spaces on Γ for noninteger τ [15]. Moreover, let m be a nonnegative integer, we define the following weighted Sobolev
spaces [16]

Wmm−1
(
Ω ′
)
:=

{
u ∈ D ′

(
Ω ′
)
:

u
√
1+ r2 ln

(
2+ r2

) ∈ L2 (Ω ′) , (1+ r2)(|λ|−1)/2 Dλu ∈ L2 (Ω ′) , 1 ≤ |λ| ≤ m} ,
where λ = (λ1, λ2), |λ| = λ1 + λ2, and r = |x| represents the distance from the origin to the point x ∈ R2.
The norm inWmm−1

(
Ω ′
)
is defined by

‖u‖Wmm−1(Ω ′) :=

∥∥∥∥∥ u
√
1+ r2 ln

(
2+ r2

)∥∥∥∥∥
2

L2(Ω ′)

+

m∑
|λ|=1

∥∥∥(1+ r2)(|λ|−1)/2 Dλu∥∥∥2
L2(Ω ′)

 1
2

.

Observe that all the local properties of the space Wmm−1(Ω
′) coincide with those of the Sobolev space Hm(Ω ′). As a

consequence, the traces of these functions on Γ satisfy the usual trace theorems.

3. The moving least squares (MLS) method

TheMLS as an approximationmethod has been introduced in [9,10]. Since the numerical approximations of MLS starting
from a cluster of scattered nodes instead of interpolation on elements, there have many meshless methods based on the
MLS method for the numerical solution of differential equations in recent years.
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