Asymptotic analysis of the Bell polynomials by the ray method

Diego Dominici

Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr., New Paltz, NY 12561-2443, USA

A R T I C L E I N F O

Article history:

Received 3 September 2007

MSC:

34E05
11B73
34E20

Keywords:

Bell polynomials
Asymptotic expansions
Stirling numbers

Abstract

We analyze the Bell polynomials $B_{n}(x)$ asymptotically as $n \rightarrow \infty$. We obtain asymptotic approximations from the differential-difference equation which they satisfy, using a discrete version of the ray method. We give some examples showing the accuracy of our formulas.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Bell polynomials $B_{n}(x)$ are defined by [1]

$$
B_{n}(x)=\sum_{k=0}^{n} S_{k}^{n} x^{k}, \quad n=0,1, \ldots
$$

where S_{k}^{n} is a Stirling number of the second kind [2]. They have the generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}=\exp \left[x\left(\mathrm{e}^{t}-1\right)\right] \tag{1}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
B_{0}(x)=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n+1}(x)=x\left[B_{n}^{\prime}(x)+B_{n}(x)\right], \quad n=0,1, \ldots \tag{3}
\end{equation*}
$$

The first few $B_{n}(x)$ are

$$
\begin{aligned}
& B_{1}(x)=x, \quad B_{2}(x)=x(1+x), \quad B_{3}(x)=x\left(1+3 x+x^{2}\right) \\
& B_{4}(x)=x\left(1+7 x+6 x^{2}+x^{3}\right), \quad B_{5}(x)=x\left(1+15 x+25 x^{2}+10 x^{3}+x^{4}\right)
\end{aligned}
$$

and in general

$$
\begin{equation*}
B_{n}(x)=x+\left(2^{n-1}-1\right) x^{2}+\cdots+\frac{n(n-1)}{2} x^{n-1}+x^{n} . \tag{4}
\end{equation*}
$$

[^0]The arithmetic properties of $B_{n}(x)$ were considered in [3] and in [4], where he also showed that the polynomials $B_{n}(x)$ have simple roots. The same result was proved in [5], using other arguments.

The strong asymptotics of $B_{n}(x)$ [6] and their zero distribution [7] was studied by C. Elbert applying the saddle point method to (1). Zhao [8], investigated the uniform asymptotic behavior of $B_{n}(x)$ on the negative real axis, where all the zeros are located. He obtained an expansion in terms of the Airy function and its derivative.

In this paper, we will use a different approach and analyze (3) instead of (1). The advantage of our method is that no knowledge of a generating function is required and therefore it can be applied to other sequences of polynomials satisfying differential-difference equations $[9,10]$.

2. Asymptotic analysis

To analyze (3) asymptotically as $n \rightarrow \infty$, we use a discrete version of the ray method [11]. Replacing the ansatz

$$
\begin{equation*}
B_{n}(x)=\varepsilon^{-n} F(\varepsilon x, \varepsilon n) \tag{5}
\end{equation*}
$$

in (3), we get

$$
\begin{equation*}
F(u, v+\varepsilon)=u\left(\varepsilon \frac{\partial F}{\partial x}+F\right) \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
u=\varepsilon x, \quad v=\varepsilon n \tag{7}
\end{equation*}
$$

and ε is a small parameter. We consider asymptotic solutions for (6) of the form

$$
\begin{equation*}
F(u, v) \sim \exp \left[\varepsilon^{-1} \psi(u, v)\right] K(u, v) \tag{8}
\end{equation*}
$$

as $\varepsilon \rightarrow 0$. Using (8) in (6) we obtain, to leading order, the eikonal equation

$$
\begin{equation*}
\mathrm{e}^{q}-u(p+1)=0 \tag{9}
\end{equation*}
$$

and the transport equation

$$
\begin{equation*}
\frac{\partial K}{\partial v}+\frac{1}{2} \frac{\partial^{2} \psi}{\partial v^{2}} K-u \exp \left(-\frac{\partial \psi}{\partial v}\right) \frac{\partial K}{\partial u}=0 \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\frac{\partial \psi}{\partial x}, \quad q=\frac{\partial \psi}{\partial v} \tag{11}
\end{equation*}
$$

The initial condition (2), implies

$$
\begin{equation*}
\psi(u, 0)=0, \quad K(u, 0)=1 \tag{12}
\end{equation*}
$$

To solve (9) we use the method of characteristics, which we briefly review. Given the first order partial differential equation

$$
\mathfrak{F}(u, v, \psi, p, q)=0
$$

with p, q defined in (11), we search for a solution $\psi(u, v)$ by solving the system of "characteristic equations"

$$
\begin{aligned}
& \dot{u}=\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{\partial \mathfrak{F}}{\partial p}, \quad \dot{v}=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\partial \mathfrak{F}}{\partial q} \\
& \dot{p}=\frac{\mathrm{d} p}{\mathrm{~d} t}=-\frac{\partial \mathfrak{F}}{\partial u}-p \frac{\partial \mathfrak{F}}{\partial \psi}, \quad \dot{q}=\frac{\mathrm{d} q}{\mathrm{~d} t}=-\frac{\partial \mathfrak{F}}{\partial v}-q \frac{\partial \mathfrak{F}}{\partial \psi}, \\
& \dot{\psi}=\frac{\mathrm{d} \psi}{\mathrm{~d} t}=p \frac{\partial \mathfrak{F}}{\partial p}+q \frac{\partial \mathfrak{F}}{\partial q}
\end{aligned}
$$

where we now consider $\{u, v, \psi, p, q\}$ to all be functions of the new variables t and s.
For (9), we have

$$
\mathfrak{F}(u, v, \psi, p, q)=\mathrm{e}^{q}-u(p+1)
$$

and therefore the characteristic equations are

$$
\begin{equation*}
\dot{u}+u=0, \quad \dot{v}=\mathrm{e}^{q}, \quad \dot{p}-p=1, \quad \dot{q}=0 \tag{13}
\end{equation*}
$$

https://daneshyari.com/en/article/4641029

Download Persian Version:

https://daneshyari.com/article/4641029

Daneshyari.com

[^0]: E-mail address: dominicd@newpaltz.edu.
 0377-0427/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
 doi:10.1016/j.cam.2009.02.082

