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a b s t r a c t

We study convexity properties of the zeros of some special functions that follow from the
convexity theorem of Sturm.We prove results on the intervals of convexity for the zeros of
Laguerre, Jacobi and ultraspherical polynomials, as well as functions related to them, using
transformations under which the zeros remain unchanged. We give upper as well as lower
bounds for the distance between consecutive zeros in several cases.
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1. Introduction

The Sturm comparison theorem for solutions of second-order differential equations of the form y′′ + F(t)y = 0 (cf. [1])
has been significantly extended since its publication 170 years ago. Some of the immediate applications to zeros of the
solutions y(t), and those of the derivative y′(t), include Sonin’s theorem on the monotonicity of extrema of such solutions
(cf. [2]), and a result known as Sturm’s convexity theorem, first mentioned in [1], on the monotonicity of distances between
the zeros of the solution (cf. [3,2,4]).
Sonin’s theorem was extended to more general differential equations of the form P(t)y′′ + Q (t)y′ + y = 0 using a

remarkably simple proof (cf. [5], p. 443). In this form the theorem can be directly applied to classical orthogonal polynomials
such as Hermite, Laguerre and Jacobi polynomials, providing the monotonicity of their relative maximum values and
estimates on their supremum norm. This has been done from a different perspective in [6], recovering results for Legendre,
Laguerre and Jacobi polynomials given in [7].
In this paper, we consider the implications of the convexity theorem of Sturm for the convexity of the zeros and bounds

on the distance between the zeros of some classical orthogonal polynomials and functions related to them.

2. Convexity and spacing of zeros

The convexity theorem and an obvious consequence of the comparison theorem of Sturm, already noted in [1], can be
summarised as follows.
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Theorem 2.1 ([8]). Let y′′(t) + F(t)y(t) = 0 be a second-order differential equation in normal form, where F is continuous in
(a, b). Let y(t) be a nontrivial solution in (a, b), and let x1 < · · · < xk < xk+1 < · · · denote the consecutive zeros of y(t) in
(a, b). Then
1. if F(t) is strictly increasing in (a, b), xk+2 − xk+1 < xk+1 − xk,
2. if F(t) is strictly decreasing in (a, b), xk+2 − xk+1 > xk+1 − xk.
3. if there exists M > 0 such that F(t) < M in (a, b) then

∆xk ≡ xk+1 − xk >
π
√
M
,

4. if there exists m > 0 such that F(t) > m in (a, b) then

∆xk <
π
√
m
.

We say that the zeros of y are concave (convex) on (a, b) for the first (second) case.
The convexity theorem has been used to obtain the variation of convexity properties with respect to a parameter, or the

order, for the zeros of gamma, q-gamma, Bessel, cylindrical and Hermite functions as described in the survey paper [9].
In order to apply the convexity theorem to special functions that are solutions of second-order differential equations, the

differential equation has to be transformed into normal form. One simple way to do this is through the following change of
dependent variable. Let

x′′ + g(t)x′ + f (t)x = 0

be a second-order differential equation and set

y = x exp
(
1
2

∫ t

g(s)ds
)
. (1)

The corresponding equation for y is in normal form:

y′′ + F(t)y = 0,

where F(t) = f (t) − 1
4g
2(t) − 1

2g
′(t). The advantage of this transformation is that it does not change the independent

variable, and the zeros of x and y are the same. Hille [10] already used transformation (1) to prove the convexity of zeros of
the Hermite polynomials.
It is also possible to consider other changes of variable and obtain information on the convexity of the transformed zeros.

This was done already by Szegő for the ultraspherical polynomials [7, Theorem 6.3.3] and lately by Deaño, Gil and Segura
[8,11] for hypergeometric functions.
We will consider the convexity and spacing of the zeros of special functions such as Laguerre, Jacobi and, as a special

case, the ultraspherical polynomials, for fixed order n, by transforming their differential equations to normal form using (1).
Sturm [1] used the samemethod to obtain results on the convexity and spacing of the zeros of the Bessel function. Interesting
work on the spacing of the zeros of Jacobi polynomials, as the degree changes, is done in [12]. For higher monotonicity refer
to, amongst others, [13,14].
We note that since the convexity theorem is applicable to any oscillating solutions of second-order differential equations

in normal form, the results we obtain are not restricted to the polynomial cases, i.e. n need not necessarily be an integer,
as long as the corresponding functions are oscillating on the interval under consideration. In addition, the results can be
extended to parameter values where the polynomials are no longer orthogonal, since quasi-orthogonality ensures the
existence of some zeros on the interval of orthogonality (cf. [15]).

3. Laguerre polynomials

The differential equation

tx′′ + (α + 1− t)x′ + nx = 0

satisfied by the Laguerre polynomials, Lαn (t), orthogonal on (0,∞)with respect to the weight function t
αe−t when α > −1,

is transformed to

y′′ + F(t)y = 0

by (1) where

F(t) =
−t2 + 2αt + 2t + 4nt − α2 + 1

4t2
. (2)

F ′(t) changes sign at

t0 :=
α2 − 1

α + 2n+ 1
. (3)
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