

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A formula for inserting point masses*

Manwah Lilian Wong

Mathematics 253-37, California Institute of Technology, Pasadena, CA 91125, United States

ARTICLE INFO

Article history: Received 27 October 2007

MSC: 42C05

30E10 05E35

Keywords:
Point masses

Decay of Verblunsky coefficients

ABSTRACT

Let $d\mu$ be a probability measure on the unit circle and $d\nu$ be the measure formed by adding a pure point to $d\mu$. We give a formula for the Verblunsky coefficients of $d\nu$, based on a result of Simon.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Suppose we have a probability measure $d\mu$ on the unit circle $\partial \mathbb{D} = \{z \in \mathbb{C} : |z| = 1\}$. We define the inner product associated with $d\mu$ and the norm on $L^2(\partial \mathbb{D}, d\mu)$ respectively by

$$\langle f, g \rangle = \int_{\partial \mathbb{D}} \overline{f(e^{i\theta})} g(e^{i\theta}) d\mu(\theta) \tag{1.1}$$

$$||f||_{d\mu} = \left(\int_{\partial \mathbb{D}} |f(e^{i\theta})|^2 d\mu(\theta)\right)^{1/2}.$$
 (1.2)

The family of monic orthogonal polynomials associated with the measure $d\mu$ is denoted as $(\Phi_n(z, d\mu))_{n=0}^{\infty}$, while the normalized family is denoted as $(\varphi_n(z, d\mu))_{n=0}^{\infty}$.

Let $\Phi_n^*(z) = z^n \overline{\Phi_n(1/\overline{z})}$ and $\varphi_n^*(z) = \Phi_n^*(z)/\|\Phi_n\|$ be the reversed polynomials. Orthogonal polynomials obey the Szegő recursion relation

$$\Phi_{n+1}(z) = z\Phi_n(z) - \overline{\alpha_n}\Phi_n^*(z) \tag{1.3}$$

 α_n is called the nth Verblunsky coefficient. It is well known that there is a one-to-one correspondence between $\mathrm{d}\mu$ and $(\alpha_j(\mathrm{d}\mu))_{j=0}^\infty$ and that the Verblunsky coefficients carry much information about the family of orthogonal polynomials. For example,

$$\|\Phi_n\|^2 = \prod_{i=0}^{n-1} (1 - |\alpha_j|^2). \tag{1.4}$$

For a comprehensive introduction to the theory of orthogonal polynomials on the unit circle, the reader should refer to [1,2], or the classic reference [3].

The result that we would like to present is the following

Supported by the Croucher Foundation, Hong Kong E-mail address: wongmw@caltech.edu.

Theorem 1.1. Suppose $d\mu$ is a probability measure on the unit circle and $0 < \gamma < 1$. Let $d\nu$ be the probability measure formed by adding a point mass $\zeta = e^{i\omega} \in \partial \mathbb{D}$ to $d\mu$ in the following manner

$$d\nu = (1 - \gamma)d\mu + \gamma \delta_{\omega}. \tag{1.5}$$

Then the Verblunsky coefficients of dv are given by

$$\alpha_n(d\nu) = \alpha_n + \frac{(1 - |\alpha_n|^2)^{1/2}}{(1 - \gamma)\gamma^{-1} + K_n(\zeta)} \overline{\varphi_{n+1}(\zeta)} \varphi_n^*(\zeta)$$
(1.6)

where

$$K_n(\zeta) = \sum_{i=0}^n |\varphi_i(\zeta)|^2$$
 (1.7)

and all objects without the label (dv) are associated with the measure $d\mu$.

The proof is based on a result obtained by Simon in the proof of Theorem 10.13.7 in [2] (See Theorem 2.1 below). In fact, the following formula had been found in [4]

$$\Phi_n(z, d\nu) = \Phi_n(z) - \frac{\Phi_n(\zeta) K_{n-1}(z, \zeta)}{(1 - \gamma) \gamma^{-1} + K_{n-1}(\zeta, \zeta)}.$$
(1.8)

The formula for the real case was rediscovered in [5], Later, the same formula for the unit circle case was rediscovered in [6]. Unaware of Geronimus' result and the fact that Nevai's result also applies to the unit circle, Simon reconsidered this problem and proved formula (2.7) independently using a totally different method.

For applications of formula (1.6), the reader may refer to [7,8].

2. The proof

First, we will prove a few lemmas.

Lemma 2.1. Let $\beta_{jk} = \langle \Phi_j(d\mu), \Phi_k(d\mu) \rangle_{d\nu}$. Then

$$\Phi_{n}(d\nu)(z) = \frac{1}{D^{(n-1)}} \begin{vmatrix}
\beta_{00} & \beta_{01} & \dots & \beta_{0n} \\
\vdots & & \vdots \\
\beta_{n-10} & \beta_{n-11} & \dots & \beta_{n-1n} \\
\Phi_{0}(d\mu) & \dots & \dots & \Phi_{n}(d\mu)
\end{vmatrix}$$
(2.1)

where

$$D^{(n-1)} = \begin{vmatrix} \beta_{00} & \beta_{01} & \dots & \beta_{0n-1} \\ \vdots & & \vdots \\ \beta_{n-10} & \beta_{n-11} & \dots & \beta_{n-1n-1} \end{vmatrix}.$$
 (2.2)

Proof. Let $\tilde{\Phi}_n(d\nu)$ be the right-hand side of (2.1). We observe that the inner product $\langle \Phi_j(d\mu), \tilde{\Phi}_n(d\nu) \rangle_{d\nu}$ is zero for $j=0,1,\ldots,n-1$ as the last row and the jth row of the determinant are the same. By expanding in minors, we see that the leading coefficient of $\tilde{\Phi}_n(d\nu)$ in (2.1) is one. In other words, $\tilde{\Phi}_n(d\nu)$ is an nth degree monic polynomial which is orthogonal to $1,z,\ldots,z^{n-1}$ with respect to $\langle \,,\, \rangle_{d\nu}$, hence $\tilde{\Phi}_n(d\nu)$ equals $\Phi_n(d\nu)$. \square

Lemma 2.2. Let C be the following $(n + 1) \times (n + 1)$ matrix

$$\begin{pmatrix} A & v \\ w & \beta \end{pmatrix} \tag{2.3}$$

where A is an $n \times n$ matrix, β is in \mathbb{C} , v is the column vector $(v_0, v_1, \dots, v_{n-1})^T$ and w is the row vector $(w_0, w_1, \dots, w_{n-1})$. If $det(A) \neq 0$, we have

$$\det(C) = \det(A) \left(\beta - \sum_{0 \le j,k \le n-1} w_k v_j(A^{-1})_{jk} \right). \tag{2.4}$$

Download English Version:

https://daneshyari.com/en/article/4641048

Download Persian Version:

https://daneshyari.com/article/4641048

Daneshyari.com