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1. Introduction and preliminaries

In this paper, we consider the following even order neutral-type partial differential equation with distributed deviating
arguments.

0 ((r)amlu £ + cOux, t — )])
& r Wux, c(t)u(x, T

b
= ao(t) Au(x, t) + ar () Aulx, t —v) — f Flt, &, u(x, g(t,§)1du(8), (1.1)
(x,t) € 2 X Ry =G, ’
subject to the following boundary condition
ux,t) =0, (x,t) €082 X Ry, (1.2)

where 7 and v are positive constants, m is an even positive integer, A is the Laplacian operator in R", R, = (0, 00),
Ry = [0, 00), £2 is a bounded domain in R" with a piecewise smooth boundary 9£2. The integral of (1.1) is a Stieltjes
one.

Throughout this paper, we assume that the following conditions hold.

(A1) ao(t), ar (t), c(t) € C(Ro, Ro), 0 < c(t) = 1;
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(A2) g(t, &) € C(Ry x [a,b],R) is nondecreasing with respect to t and &, and g(t,&) < t for & € [a,b], and
liminf;_, o0 gcfa,p) 8(t, §) = 00, (d/db)g(t, a) exists;

(A3) wu(&) € C([a, b], R) is nondecreasing;

(A4) For F € C([ty, 00) x R, R), there exist functions g, (t, &) € C([ty, o0) X [a, b], R;), and gy, (¢, &) is not identically zero
for all large t, 0 € C([ty, 00), R ), and a constant p > 1 such that

F(t, &, u)signu > qn(t, &)|ul’ foruz£0andt > to,
and

o(t) < min{t, g(t, a)}, o'(t) >0 fort >ty, and tlim o(t) = oo.
—00

(A5) 1 € C([ty, 00), Ry), lime o ftg r~1(s)ds = oo, liminfi_,o r(t) = ¢ > 0.Forany & > 0, there exists a t, > to, such

that [r'(t)] < eQ(t) forall t > t,
where

1-p b
Q) = ( f ¢<x>dx) / an(t, ©)[1 — c(g(t, ) PAuE),
2 a

and the function ¢(x) > 0inx € £2 is the corresponding eigenfunction of the Dirichet problem (2.1) and (2.2) given
in Section 2.

It is well-known that partial functional differential equations (PFDE) arise from many biological, chemical, and physical
systems which are characterized by both spatial and temporal variables and exhibit various spatio-temporal patterns [1,
12]. In past years, the fundamental theory of PFDE has been investigated extensively by many scholars. We refer the reader
to the monograph [12]. On the other hand, we notice that the oscillation theory for high-order PFDE is an object of long
standing interest [1,5,6,10]. However, to the best of our knowledge, there are very few results dealing with the oscillation
of the solutions of Eq. (1.1) in general form, although Wang et al. [ 10] have obtained some oscillation criteria for boundary
value problems of even order linear PFDE

m

a b
ﬁ[u(x, t) +c®ux, t —1)] = ap(t)Au(x, t) + a1 (t) Au(x, t — v) —/ qx, t, &ulx, g(t, &))du (&), (1.3)

(x,t) € 2 xRy =0G.
Obviously, (1.3) is a special form of Eq. (1.1).

The objective of this paper is to establish Kamenev-type oscillation criteria [ 7] of solutions to the boundary value problem
givenby (1.1) and (1.2). Our approach is to reduce the high-dimensional oscillation problem to a one-dimensional oscillation
one, and the general means developed by Philos and Wong is used as the main tool. The results obtained here extend and
improve the main results in [10].

For completeness, we first introduce the following concepts and Lemmas.

Definition 1.1. A function u € C>(G) N C'(G) is said to be a solution of the boundary value problem (1.1) and (1.2), if it
satisfies (1.1) in the domain G and the boundary condition on the boundary.

Definition 1.2. A solution u(x, t) of the boundary value problem (1.1) and (1.2) is said to be oscillatory in the domain G, if
for any positive number t,, there exists a point (xo, tp) € £2 X [t,, 00) such that the condition u(xo, ty) = 0 holds.

Next, we introduce the general means developed in [8,11], and present some properties which will be used in the proof
of our main results. Let D = {(t,s) : t > s > tg} and Dy = {(t,s) : t > s > tp}. We say that a function H € C(D, R) belongs
to the function class J, written as H € 3, if
(H1) H(t,t) = 0fort > ty, H(t,s) > 0 on Dy;

(H2) H has a continuous and nonpositive derivative in Dy with respect to the second variable;
(H3) There exist functions p € C'([ty, 00), R;) and h € C(D, R) such that

%[H(t,s)p(s)] = —H(t, s)h(t,s), (t,s) € Dy.

Let p € C([ty, 00), R;) and H € 3, we take an integral operator A defined in [11], in terms of H(t, s) and p(s) as

t
Mt = [ HE90Op0s 2T 20, (14)
T
where ¢ € C([ty, 00), R). It is easy seen that the integral operator A satisfies the following properties:
Ar(lihy + Lo t) = LAr(hys £) + BLAr(hos t); (1.5)
Ar(hs; t) > 0 whenever hz > 0; (1.6)
Ar(hy; ) = —H(t, Dha(T)p(T) + Ar(p™"hahs t). (1.7)

Here, hy, hy, h; € C([ty, 00), R), hy € C'([ty, 00), R),and Iy, |, € R.
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