

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Quicksort algorithm: Application of a fixed point theorem in intuitionistic fuzzy quasi-metric spaces at a domain of words

Reza Saadati ^{a,b,*,1}, S. Mansour Vaezpour ^b, Yeol J. Cho ^{c,d}

ARTICLE INFO

Article history: Received 24 March 2008 Received in revised form 1 August 2008

Dedicated to Prof. M.R. Mokhtarzadeh

MSC: 47H10 54E50

Keywords:
Domain of words
Quicksort algorithms
Intuitionistic fuzzy metric spaces
Completeness
Fixed point theorem

ABSTRACT

In this paper, we apply an intuitionistic fuzzy quasi-metric version of a fixed point theorem, to obtain the existence of solution for a recurrence equation associated with the analysis of Quicksort algorithms.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

In this section, using the idea of intuitionistic fuzzy metric spaces introduced in [1-3] we define the new notion of intuitionistic fuzzy metric spaces with the help of the notion of continuous t-representable (see [4]).

Lemma 1.1 ([5]). Consider the set L^* and operation \leq_{L^*} defined by:

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 < 1\},$$

 $(x_1, x_2) \leq_{L^*} (y_1, y_2) \iff x_1 \leq y_1 \text{ and } x_2 \geq y_2, \text{for every } (x_1, x_2), (y_1, y_2) \in L^*. \text{ Then } (L^*, \leq_{L^*}) \text{ is a complete lattice.}$

Definition 1.2 ([6]). An intuitionistic fuzzy set $A_{\zeta,\eta}$ in a universe U is an object $A_{\zeta,\eta} = \{(\zeta_A(u), \eta_A(u)) | u \in U\}$, where, for all $u \in U$, $\zeta_A(u) \in [0, 1]$ and $\eta_A(u) \in [0, 1]$ are called the membership degree and the non-membership degree, respectively, of u in $A_{\zeta,\eta}$, and furthermore they satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

^a Faculty of Sciences, University of Shomal, Amol, Iran

^b Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914, Iran

^c Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Republic of Korea

^d RINS, Gyeongsang National University, Chinju 660-701, Republic of Korea

^{*} Corresponding author at: Faculty of Sciences, University of Shomal, Amol, Iran. Tel.: +98 1212262650. E-mail addresses: rsaadati@eml.cc (R. Saadati), vaez@aut.ac.ir (S.M. Vaezpour), yjcho@gsnu.ac.kr (Y.J. Cho).

¹ This research is partially supported by Research Center in Algebraic Hyperstructures and Fuzzy Mathematics, University of Mazandaran, Babolsar, Iran.

We denote its units by $0_{L^*}=(0,1)$ and $1_{L^*}=(1,0)$. Classically, a triangular norm *=T on [0,1] is defined as an increasing, commutative, associative mapping $T:[0,1]^2 \longrightarrow [0,1]$ satisfying T(1,x)=1*x=x, for all $x\in[0,1]$. A triangular conorm $S=\diamondsuit$ is defined as an increasing, commutative, associative mapping $S:[0,1]^2 \longrightarrow [0,1]$ satisfying $S(0,x)=0 \diamondsuit x=x$, for all $x\in[0,1]$. Using the lattice (L^*,\leq_{L^*}) these definitions can be straightforwardly extended.

Definition 1.3 ([5]). A triangular norm (t-norm) on L^* is a mapping $\mathcal{T}:(L^*)^2\longrightarrow L^*$, satisfying the following conditions:

 $(\forall x \in L^*)(\mathcal{T}(x, 1_{L^*}) = x)$, (boundary condition)

 $(\forall (x, y) \in (L^*)^2)(\mathcal{T}(x, y) = \mathcal{T}(y, x)), \text{(commutativity)}$

 $(\forall (x, y, z) \in (L^*)^3)(\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)), (associativity)$

 $(\forall (x, x', y, y') \in (L^*)^4)$ $(x \leq_{L^*} x' \text{ and } y \leq_{L^*} y' \Longrightarrow \mathcal{T}(x, y) \leq_{L^*} \mathcal{T}(x', y'))$. (monotonicity)

If $(L^*, \leq_{l^*}, \mathcal{T})$ is an Abelian topological monoid with unit 1_{l^*} , then \mathcal{T} is said to be a *continuous t*-norm.

Definition 1.4 ([5]). A continuous t-norm \mathcal{T} on L^* is called continuous t-representable if and only if, there exist a continuous t-norm * and a continuous t-conorm \diamond on [0, 1] such that, for all $x = (x_1, x_2), y = (y_1, y_2) \in L^*$,

$$\mathcal{T}(x,y) = (x_1 * y_1, x_2 \diamond y_2).$$

Now, define a sequence \mathcal{T}^n recursively by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^{n}(x^{(1)},\ldots,x^{(n+1)}) = \mathcal{T}(\mathcal{T}^{n-1}(x^{(1)},\ldots,x^{(n)}),x^{(n+1)})$$

for $n \ge 2$ and $x^{(i)} \in L^*$.

For example, $\mathcal{T}(a,b)=(a_1b_1,\min(a_2+b_2,1))$ for all $a=(a_1,a_2)$ and $b=(b_1,b_2)$ in L^* is a continuous t-representable.

Definition 1.5. A negator on L^* is any decreasing mapping $\mathcal{N}: L^* \longrightarrow L^*$ satisfying $\mathcal{N}(0_{L^*}) = 1_{L^*}$ and $\mathcal{N}(1_{L^*}) = 0_{L^*}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L^*$, then \mathcal{N} is called an involutive negator. A negator on [0, 1] is a decreasing mapping $\mathcal{N}: [0, 1] \longrightarrow [0, 1]$ satisfying $\mathcal{N}(0) = 1$ and $\mathcal{N}(1) = 0$. \mathcal{N}_s denotes the standard negator on [0, 1] defined as, for all $x \in [0, 1], \mathcal{N}_s(x) = 1 - x$. We show $(\mathcal{N}_s(\lambda), \lambda) = \mathcal{N}_s(\lambda)$.

Definition 1.6. The *t*-norm \mathcal{T} is *Hadžić type* if for given $\varepsilon \in (0, 1)$ there is $\delta \in (0, 1)$, such that

$$\mathcal{T}^{m}(\mathcal{N}_{s}(\delta),\ldots,\mathcal{N}_{s}(\delta))>_{L^{*}}\mathcal{N}_{s}(\varepsilon), \quad m\in\mathbf{N}.$$

A typical example of such t-norms is

$$\wedge(a, b) = (\min(a_1, b_1), \max(a_2, b_2)),$$

in which $a=(a_1,a_2)$ and $b=(b_1,b_2)$ are two elements of L^* . The pair (X,d) is said to be a *quasi metric space*, if X is an arbitrary (non-empty) set, and d is a mapping from X^2 into $[0,+\infty)$, satisfying the following conditions for every $x,y,z\in X$:

- (i) d(x, y) = d(y, x) = 0 if and only if x = y;
- (ii) d(x, y) < d(x, z) + d(z, y).

Definition 1.7. Let M, N are fuzzy sets from $X^2 \times [0, +\infty)$ to [0, 1] such that $M(x, y, t) + N(x, y, t) \leq 1$ for all $x, y \in X$ and t > 0. The 3-tuple $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is said to be an *intuitionistic fuzzy quasi-metric space* if X is an arbitrary (non-empty) set, \mathcal{T} is a continuous t-representable and $\mathcal{M}_{M,N}$ is a mapping $X^2 \times [0, +\infty) \to L^*$ (an intuitionistic fuzzy set, see Definition 1.2) satisfying the following conditions for every $x, y, z \in X$ and t, s > 0:

- (a) $\mathcal{M}_{M,N}(x, y, 0) = 0_{L^*}$;
- (b) $\mathcal{M}_{M,N}(x, y, t) = \mathcal{M}_{M,N}(y, x, t) = 1_{L^*}$ if and only if x = y;
- (c) $\mathcal{M}_{M,N}(x,y,t+s) \geq_{L^*} \mathcal{T}(\mathcal{M}_{M,N}(x,z,t),\mathcal{M}_{M,N}(z,y,s));$
- (d) $\mathcal{M}_{M,N}(x,y,\cdot):[0,\infty)\longrightarrow L^*$ is left continuous.

In this case, $\mathcal{M}_{M,N}$ is called an intuitionistic fuzzy quasi-metric. Here,

$$\mathcal{M}_{M,N}(x, y, t) = (M(x, y, t), N(x, y, t)).$$

Note that an intuitionistic fuzzy quasi-metric space $(X, \mathcal{M}_{M,N}, \mathcal{T})$ satisfying for all $x, y \in X$ and t > 0 the symmetry axiom $\mathcal{M}_{M,N}(x,y,t) = \mathcal{M}_{M,N}(y,x,t)$ is an intuitionistic fuzzy metric space [4].

If the intuitionistic fuzzy quasi-metric space $(X, \mathcal{M}_{M,N}, \mathcal{T})$ satisfies the condition:

$$\lim_{t\to\infty}\mathcal{M}_{M,N}(x,y,t)=\lim_{t\to\infty}\mathcal{M}_{M,N}(y,x,t)=1_{L^*},$$

then $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is called *Menger* intuitionistic fuzzy quasi-metric space. If $(X, \mathcal{M}_{M,N}, \mathcal{T})$ is an intuitionistic fuzzy quasi-metric space, where $\mathcal{M}_{M,N}^{-1}(x,y,t) = \mathcal{M}_{M,N}(y,x,t)$. Moreover, if we denote by $\mathcal{M}_{M,N}^i$ the fuzzy set in $X^2 \times [0, +\infty)$ given by

$$\mathcal{M}_{M,N}^i(x,y,t) = \mathcal{T}(\mathcal{M}_{M,N}(x,y,t),\,\mathcal{M}_{M,N}^{-1}(x,y,t)),$$

Download English Version:

https://daneshyari.com/en/article/4641119

Download Persian Version:

https://daneshyari.com/article/4641119

<u>Daneshyari.com</u>