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a b s t r a c t

We provide two types of semilocal convergence theorems for approximating a solution
of an equation in a Banach space setting using an inexact Newton method [I.K. Argyros,
Relation between forcing sequences and inexact Newton iterates in Banach spaces,
Computing 63 (2) (1999) 134–144; I.K. Argyros, A new convergence theorem for the
inexact Newton method based on assumptions involving the second Fréchet-derivative,
Comput. Appl. Math. 37 (7) (1999) 109–115; I.K. Argyros, Forcing sequences and inexact
Newton iterates in Banach space, Appl. Math. Lett. 13 (1) (2000) 77–80; I.K. Argyros, Local
convergence of inexact Newton-like iterative methods and applications, Comput. Math.
Appl. 39 (2000) 69–75; I.K. Argyros, Computational Theory of Iterative Methods, in: C.K.
Chui, L. Wuytack (Eds.), in: Studies in Computational Mathematics, vol. 15, Elsevier Publ.
Co., New York, USA, 2007; X. Guo, On semilocal convergence of inexact Newton methods,
J. Comput. Math. 25 (2) (2007) 231–242]. By using more precise majorizing sequences
than before [X. Guo, On semilocal convergence of inexact Newton methods, J. Comput.
Math. 25 (2) (2007) 231–242; Z.D. Huang, On the convergence of inexact Newton
method, J. Zheijiang University, Nat. Sci. Ed. 30 (4) (2003) 393–396; L.V. Kantorovich,
G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982; X.H.Wang, Convergence on
the iteration of Halley family in weak condition, Chinese Sci. Bull. 42 (7) (1997) 552–555;
T.J. Ypma, Local convergence of inexactNewtonmethods, SIAM J. Numer. Anal. 21 (3) (1984)
583–590], we provide (under the same computational cost) under the same or weaker
hypotheses: finer error bounds on the distances involved; an at least as precise information
on the location of the solution. Moreover if the splitting method is used, we show that a
smaller number of inner/outer iterations can be obtained.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In this study we are concerned with the problem of approximating a solution x∗ of equation

F(x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a real Banach space X with values in a real
Banach space Y .
A large number of problems in applied mathematics and also in engineering is solved by finding the solutions of certain

equations. For example, dynamic systems are mathematically modeled by difference or differential equations, and their
solutions usually represent the states of the systems. For the sake of simplicity, assume that a time-invariant system is driven
by the equation ẋ = Q (x) for some suitable operator Q , where x is the state. Then, the equilibrium states are determined

∗ Tel.: +1 580 5368754; fax: +1 580 5812616.
E-mail address: iargyros@cameron.edu.

0377-0427/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.10.005

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:iargyros@cameron.edu
http://dx.doi.org/10.1016/j.cam.2008.10.005


I.K. Argyros / Journal of Computational and Applied Mathematics 228 (2009) 434–443 435

by solving Eq. (1.1). Similar equations are used in the case of discrete systems. The unknowns of engineering equations can
be functions (difference, differential, and integral equations), vectors (systems of linear or nonlinear algebraic equations),
or real or complex numbers (single algebraic equations with single unknowns). Except in special cases, the most commonly
used solution methods are iterative — when starting from one or several initial approximations a sequence is constructed
that converges to a solution of the equation. Iteration methods are also applied for solving optimization problems. In such
cases, the iteration sequences converge to an optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general framework.
We shall use the iterative procedure

xn+1 = xn + sn, (n ≥ 0), (1.2)

where step sn satisfies

F ′(xn)sn = −F(xn)+ rn (n ≥ 0), (1.3)

for some null residual sequence {rn} ⊆ Y , to generate a sequence {xn} approximating the solution x∗.
A convergence analysis of inexact Newton method (1.2) has been given by many authors and under various

assumptions [1–4,7–10,12,14–17]. If sn = 0 (n ≥ 0), we obtain the ordinary Newton’s method for solving nonlinear
equations. Otherwise iterative procedure (1.2) is called inexact Newton’s method. By semilocal convergence we mean that
we are seeking a solution x∗ inside a ball centered at the initial guess x0, and of a certain finite radius. We recommend the
reading of Chapter XVIII on Newton’s method of the Kantorovich and Akilov book [15], especially Theorem 6 in Section 1.5,
alongwith the proof, to see how themajorizing function is constructed there (whose least zero plays an important role) (see
also relevant Section 4.2 in [7]).
There are two kinds of methods for the solution of linear equations. The first kind of methods are the so-called direct

methods, or elimination methods. In this case the exact solution is determined through a finite number of arithmetic
operations in real arithmetic without considering the round-off errors. For a list of difficulties and how to handle them
we refer the reader to [9].
Another kind of methods are the iterative ones, which result in a two-stagemethod, or sometimes termed as inner/outer

iterations for solving nonlinear equation (1.1).
In this study we are motivated by optimization considerations and the elegant works in [12,14,16]. Guo provided

semilocal convergence analysis for inexact Newton method (1.2) using Lipschitz conditions on the Fréchet-derivative F ′
of operator F . He also provided bounds on the number of inner iteration steps.
We use a combination of Lipschitz and center-Lipschitz conditions along the lines of our works on Newton as well as

Newton-like methods [5–7] to provide a new convergence analysis for inexact Newton method (1.2) with advantages over
earlier works [1–4,7–10,12,14–17] (especially [12,14–17]) as stated in the abstract of this paper.

2. Type I semilocal convergence analysis of inexact Newton method (1.2)

Themain new idea is to introduce a center-Lipschitz condition (with constant γ0), and then use it instead of the Lipschitz
condition (with constant γ ) employed in [12] to provide more precise upper bounds on the norms ‖F ′(x)−1 F ′(x0)‖ in case
γ0 < γ (see also the proof of Theorem 2.1, and Remark 2.2 that follow).We can show themain semilocal convergence result
for the inexact Newton method (1.2):

Theorem 2.1. Let F :D ⊆ X → Y be a Fréchet-differentiable operator. Suppose: F ′(x0)−1 ∈ L(Y , X) for some x0 ∈ D, and there
exist parameters β > 0, γ0 ≥ 0, γ ≥ 0, and η ∈ [0, 1) such that for all x, y ∈ D:

‖F ′(x0)−1F(x0)‖ ≤ β,
‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ γ0‖x− x0‖,
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ γ ‖x− y‖,
‖F ′(x0)−1rn‖
‖F ′(x0)−1F(xn)‖

≤ ηn, η = max
n
{ηn},

βγ ≤ p0,

and

U1 = U
(
x0,

s1
1− σ

)
=

{
x ∈ X: ‖x− x0‖ ≤

s1
1− σ

}
⊆ D,

where,

p0 = −
2η2 + 14η + 11−

√
(4η + 5)3

(1+ η)(1− η)2
,
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