
Journal of Computational and Applied Mathematics 228 (2009) 444–457

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Eigenvalue bounds for the Schur complement with a pressure
convection–diffusion preconditioner in incompressible flow
computations
Paul Deuring
Université Lille Nord de France, Laboratoire de Mathématiques Pures et Appliquées, BP 699, 62228 Calais cédex, France

a r t i c l e i n f o

Article history:
Received 5 September 2007
Received in revised form 28 May 2008

MSC:
65F10
65F35
65F22
65N25

Keywords:
Non-symmetric saddle point problems
Preconditioning
Schur complement
Finite element methods
Navier–Stokes equations

a b s t r a c t

If the stationaryNavier–Stokes systemor an implicit time discretization of the evolutionary
Navier–Stokes system is linearized by a Picard iteration and discretized in space by amixed
finite element method, there arises a saddle point systemwhichmay be solved by a Krylov
subspace method or an Uzawa type approach. For each of these resolution methods, it is
necessary to precondition the Schur complement associated to the saddle point problem
in question. In the work at hand, we give upper and lower bounds of the eigenvalues
of this Schur complement under the assumption that it is preconditioned by a pressure
convection–diffusion matrix.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Consider the time-dependent Navier–Stokes equations,

∂tu− ν ·∆u+ (u · ∇)u+∇π = f , div u = 0, (1.1)

or its stationary counterpart,

− ν ·∆u+ (u · ∇)u+∇π = f , div u = 0, (1.2)

supplemented by boundary conditions and, in the time-dependent case, by initial conditions. Suppose this (initial-)
boundary value problem is discretized implicitly or semi-implicitly in time (if there is a time variable), and is linearized by a
Picard iteration (if the problem is stationary or was implicitly discretized in time). Further suppose it is discretized in space
by a mixed finite element method. In this situation, a variational problem of the following type arises: Find uh ∈ Vh, πh ∈ Ph
such that

a(uh, w)+ b1(w, πh) = F(w) forw ∈ Vh, b2(uh, σ )− c(πh, σ ) = G(σ ) for σ ∈ Ph. (1.3)

Here h is a grid parameter, Vh and Ph are finite dimensional spaces, F : Vh 7→ R and G : Ph 7→ R are linear operators, b1
and b2 are bilinear forms corresponding to respectively the gradient and the divergence operator, and a is a bilinear form
representing an ‘‘advection–diffusion–reaction operator’’ of the form−ν ·∆u+(v0 ·∇)u+θ ·u. The parameter θ corresponds
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to the inverse of the time step in the evolutionary case, and equals 0 otherwise. The function v0 is the velocity approximation
from the preceding step of the nonlinear iteration or from the preceding time step. In the case of LBB-stable mixed finite
element methods, the form c vanishes; otherwise it plays the role of a ‘‘stabilization term’’. Other such terms may appear
in the definition of b1, b2 and a, or may be incorporated into F and G. In the LBB case, the forms b1 and b2 usually coincide.
Algebraically, problem (1.3) corresponds to a saddle point system of the form

K ·
(
X
P

)
=

(
F
G

)
, with K :=

(
N BT1
B2 −C

)
, (1.4)

where N may be considered as a ‘‘vector advection–diffusion–reaction operator’’. The matrices B1, B2 are discrete gradient
and divergence operators, possibly including stabilization terms; C is a stabilization matrix which is zero in the case of
LBB-stable finite elements. The solution vector X corresponds to the unknown uh in (1.3), and the vector P to πh. Since
usually the size of K is large, iterative methods frequently are the most efficient means for solving (1.4). Following [20], we
may distinguish two major classes of such solvers, that is, multigrid methods and Krylov subspace methods like GMRES. In
general, the latter methods are used in two different ways: either they are applied to the global matrix K , or first the velocity
part X is eliminated, and then the pressure part P is computed by solving a system with the pressure Schur complement
S := C + B2 · N−1 · BT1 as system matrix. As explained in [20], in both cases (not only in the second), and also in the case
of somemultigrid methods, a crucial problem consists in finding a suitable preconditioner for S. Under the assumption that
the discrete advection–diffusion–reaction operator N can be efficiently approximated, such a preconditioner was proposed
in [15]; it will be denoted by Ŝ−1 in what follows, and is given by Ŝ−1 := M−1p · Np · A

−1
p , where Mp and Ap are projections

of the identity and of a Neumann Laplacian onto the pressure finite element space, and Np is the projection of the velocity
operator−ν ·∆u+ (v0 · ∇)u+ θ · u onto the same space.
This choice of preconditioner is motivated in [15,19] and [9, p. 347–348] for example. As concerns numerical tests, a

great number of them have been performed by now, with very satisfactory results. We refer to [6–9,15,19–21,24,26] in this
respect. As concerns other aspects of solving (1.4), like symmetric preconditioners,multigridmethods, or the case of exterior
flows, we mention [3,4,16–18,23,25,28]. This list is by no means exhaustive; many more references may be found in [9].
In the work at hand, we are interested in a theoretical aspect: we want to determine upper and lower bounds of the

eigenvalues of Ŝ−1 · S. These bounds are crucial in attempts to evaluate the performance of iterative methods applied to
(1.4); compare [9, Chapter 4]. Partial results on such bounds were presented in [7] (Newton’s method) and [8]; a detailed
theory was given in [19]. In the latter article, it was shown in particular how to treat a large class of stabilized methods in a
unified way. The arguments in [19] are largely based on matrix algebra, but they also refer to H2-estimates of solutions to
elliptic partial differential equations. These estimates, besides requiring unnecessary restrictions on the domain of solutions
to (1.1) and (1.2), present the additional inconvenience that the constants appearing in themare not very explicit as concerns
their dependence on the parameters of the problem at hand. But it is precisely this dependence which is of interest in view
of performance analysis of iterative methods.
In the present paper we will present a theory which is self-contained, does not use any regularity results for partial

differential equations, and allows us to trace all relevant parameters in an explicit way. Our arguments are based on a
variational approach which we already used in [5] in order to deal with preconditioning of the Schur complement by a
pressuremassmatrix. In the present context, this approach consists in writing the eigenvalue equation Ŝ−1 ·S ·P = λ ·P as a
variational problem, estimating the solutions of this problem, and then deducing from these estimates the desired bounds of
λ. This programwill be developed in the form of an abstract theory (Section 2), which is afterwards applied to the stabilized
finite element methods considered in [19], and to LBB-stable methods (Section 3).

2. Abstract theory

Let V and M be finite dimensional Hilbert spaces with scalar products denoted by respectively (, )V and (, )M , and with
associated norms denoted by ‖ ‖V and ‖ ‖M . Since we want to deal with the two cases of enclosed and non-enclosed flow
at the same time, we fix some m0 ∈ M . Typically the case m0 = 0 is related to models of non-enclosed flow, whereas the
casem0 6= 0 pertains to enclosed flows. We putM0 := {p ∈ M : (p,m0)M = 0}. Of course, ifm0 = 0, we haveM = M0.
Moreover, we introduce another norm on V , denoted by ‖ ‖a and supposed to be induced by a scalar product. This

assumption and the fact that the dimension of V is finite ensure that ‖ ‖a is a norm induced by the scalar product of a
Hilbert space. But the scalar product in question will not appear explicitly. The norms ‖ ‖V and ‖ ‖a are assumed to be
linked by the inequality

‖v‖V ≤ K1 · ‖v‖a for v ∈ V , (2.1)
with some constant K1 > 0. Next consider bilinear forms a : V × V 7→ R, b1, b2 : V ×M 7→ R, c : M ×M 7→ R such that
c is symmetric and c(p, p) ≥ 0 for p ∈ M , and such that there are constants ε ∈ [0,∞), K2, . . . , K5 ∈ (0,∞)with

K2 · ‖v‖2a ≤ a(v, v), |a(v,w)| ≤ K3 · ‖v‖a · ‖w‖V for v,w ∈ V ; (2.2)

|b1(v, p)| ≤ K4 · ‖v‖V · ‖p‖M , |b1(v, p)− b2(v, p)| ≤ ε · ‖v‖a · ‖p‖M for v ∈ V , p ∈ M; (2.3)
|c(p, q)| ≤ K5 · ‖p‖M · ‖q‖M for p, q ∈ M; (2.4)
b2(v,m0) = 0 for v ∈ V , c(m0, p) = 0 for p ∈ M. (2.5)
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