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a b s t r a c t

This work is devoted to the study of quadrature rules for integration with respect to
(w.r.t.) general probability measures with known moments. Automatic calculation of the
Clenshaw–Curtis rules is considered and analyzed. It is shown that it is possible to construct
these rules in a stable manner for quadrature w.r.t. balanced measures. In order to make
a comparison Gauss rules and their stable implementation for integration w.r.t. balanced
measures are recalled. Convergence rates are tested in the case of binomial measures.
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1. Introduction

In quadrature theory, much effort has been done in the analysis of the integration with respect to (w.r.t.) the Lebesgue
measure or to some of its weighted variants. Among the possible generalizations of the problem, the case of singular
measures naturally appears, for instance, when dealing with fractal properties of some physical phenomenon, see [3,17].
In a recent review paper [25], Trefethen compares the convergence rates of Clenshaw–Curtis rules with the Gauss ones.

In this paper the author points out that the two rates of convergence are similar if the integrand function is not analytic in
a suitable neighborhood of the interval of integration. In the present paper we want to compare the same two families of
quadrature rules when the integration is performed w.r.t. a singular (fractal) measure.
We beginwith the introduction of the convergence theory for general quadrature rules in Section 2. Then in Section 3, we

introduce the Clenshaw–Curtis and Gauss families of quadrature rules and their numerical construction. On the one hand
we notice that these rules converge for wide classes of functions. On the other hand, for a general measure, we observe
that the automatic calculation passes through an unstable procedure which is of different origin in the two cases. In the
Gauss quadrature it appears when the construction of the recurrence coefficients for orthogonal polynomials is carried
out [4], while in the Clenshaw–Curtis case when the calculation of modified moments is performed [5]. In Section 4 we
recall the definition of balanced measures. We show that, despite the general case, for this class of singular measures it
is possible to construct in a stable manner both formulae. In the case of Gauss quadrature this has been developed in [15],
while for Clenshaw–Curtis rule it is made adapting the analysis in [24]. In the same section the connectionwith the theory of
linear refinable functionals introduced in [14] is also analyzed. As an application, in Section 5 the quadrature w.r.t. binomial
measures is performed through numerical tests.
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2. Preliminary results and definitions

In this introductionwepresent some results valid for a generalmeasureµ, thatwewill assume finite, positive anddefined
in a closed interval [a, b]. Our aim is to study how to calculate

Iµ(f ) ≡
∫ b

a
f (x)dµ(x); (1)

where f ∈ L1µ ≡ {f : [a, b] → R :
∫ b
a |f (x)|dµ(x) <∞}.

In general a quadrature rule In is defined by means of (n + 1) distinct points ξj ∈ [a, b] called nodes and (n + 1) real
valueswj called weights:

In(f ) ≡
n∑
j=0

wjf (ξj). (2)

In order to obtain efficient quadrature rules, we can construct In to be the exact integral of an approximating function f̃ :
In(f ) = Iµ(f̃ ). In what follows, we assume that the moments of the measure are known:

λj ≡

∫ b

a
xjdµ(x) ∀j = 0, 1, . . . (3)

and for this reason we will take as approximating function a polynomial, f̃ (x) ∈ Pn where Pn are the polynomials of degree
at most n. Such rule will be called interpolatory quadrature formula when the polynomial that we integrate exactly is the
(unique) polynomial of degree n interpolating the function f at the nodes ξj.
We will say that a quadrature rule has degree of exactness d if

n∑
j=0

wjξ
q
j = λq ∀q ≤ d, q ∈ N.

It is well known that every quadrature rule with n+ 1 nodes of degree of exactness at least n is interpolatory. In general the
following result holds true, see [6, Section 1.3]:

Theorem 2.1. The quadrature rule (2) has degree of exactness d = n + k, k ≥ 0 if and only if both of the following conditions
are satisfied:
1. the formula (2) is interpolatory;
2. the following holds true:∫ b

a
ωn(x)p(x)dµ(x) = 0 ∀p ∈ Pk−1 (P−1 ≡ ∅)

where ωn(x) =
∏n
j=0(x− ξj) is the nodal polynomial.

Given a function f ∈ L1µ, we will say that a sequence of quadrature rules {In}n converges in f if In(f )→n Iµ(f ).
Given a function f ∈ C0, we will denote by p∗d(x) the polynomial

1 of degree at most d that gives the best approximation
to f on [a, b]w.r.t. the supremum norm.Wewill also denote by E∗d ≡ ‖f −p

∗

d‖∞. With this notations, the following theorem
gives the most general error estimate, see [12, Theorem 5.2.2] or [25, Theorem 4.1].

Theorem 2.2. Let In be a quadrature rule with weights wj, j = 0, . . . , n of degree of exactness d ≥ 0. Then for all f ∈ C0 we
have: ∣∣Iµ(f )− n(f )∣∣ ≤ E∗d

[
n∑
j=0

|wj| + µ([a, b])

]
.

The result is proved simply applying the definitions and the triangular inequality.
If we consider a family of rules {In}n of increasing degrees of exactness dn and such that

∑n
j=0 |wj| ≤ Kn wewill have that

the rule converges if KnE∗dn→n→∞ 0. Notice that for interpolatory quadrature rules the constant Kn is bounded from above
by the Lebesgue constantΛn (see [22, Eq. (8.11)]).
As corollary of the Weierstrass theorem we can state also that for every f ∈ C0 there exists always a sequence of

polynomials uniformly convergent to f , and therefore the corresponding quadrature rules will be convergent. On the other
hand it is very well known that equispaced interpolatory quadrature formulae do not converge in general due to Runge
phenomenon.

1 Note that this polynomial is unique. For the theory of the best approximation see, ad example, [19, Section 3.2].
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