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a b s t r a c t

This paper analyzes the rate of local convergence of the Log-Sigmoid nonlinear
Lagrange method for nonconvex nonlinear second-order cone programming. Under the
componentwise strict complementarity condition, the constraint nondegeneracy condition
and the second-order sufficient condition, we show that the sequence of iteration points
generated by the proposed method locally converges to a local solution when the penalty
parameter is less than a threshold and the error bound of solution is proportional to
the penalty parameter. Finally, we report numerical results to show the efficiency of the
method.
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1. Introduction

In this paper, we consider the nonconvex nonlinear second-order cone programming problem of the form

(NLSOP) minimize f (x)
subject to h(x) = 0,

g j(x)�Qmj+1 0, j = 1, 2, . . . , J,
(1.1)

where f : Rn → R, h : Rn → Rl and g j : Rn → Rmj+1, j = 1, 2, . . . , J are twice continuously differentiable. The
second-order cone (or ice-cream cone, or Lorentz cone) of dimensionm+ 1 is defined by

Qm+1 := {x = (x0; x̄) ∈ Rm+1 : ‖x̄‖ ≤ x0},

and the order relation�Qm+1 induced by Qm+1 is given by

x�Qm+1 0 if and only if x ∈ Rm+1, ‖x̄‖ ≤ x0.

The interior of the cone Qm+1, denoted by intQm+1, is the set of x ∈ Rm+1 such that x0 > ‖x̄‖. In that case, we say that
x�Qm+1 0 for x ∈ intQm+1. The boundary of Qm+1, denoted by ∂Qm+1, is the set of x ∈ Rm+1 such that x0 = ‖x̄‖.
Let Q := Qm1+1 × Qm2+1 × · · · × QmJ+1. Denote

g(x) := (g1(x); g2(x); . . . ; g J(x)) ∈ Rq, g j(x) ∈ Rmj+1,

u := (u1; u2; . . . ; uJ) ∈ Rq, uj ∈ Rmj+1,
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where q :=
∑J
j=1(mj + 1). Then the problem (NLSOP) can be expressed as

minimize f (x) subject to h(x) = 0, g(x) ∈ Q .

The standard (linear) Lagrangian of (NLSOP) is defined by

L(x, ζ , u) = f (x)− 〈ζ , h(x)〉 −
J∑
j=1

〈uj, g j(x)〉, (1.2)

which plays an important role in describing the optimality conditions for second-order cone optimization problem (1.1) and
designing algorithms for solving (1.1). For convex programming, the saddle point theory can be established in terms of the
standard Lagrangian and dual algorithms based on solving minimizing L(x, ζk, uk) can be developed as well, where (ζk, uk)
is the estimate multiplier at the kth iteration. For nonconvex nonlinear programming, L(x, ζ , u) is usually not convex even
for (ζk, uk) being near to (ζ ∗, u∗) and x in a neighborhood of x∗, where (x∗, ζ ∗, u∗) is a Karush–Kuhn–Tucker point to the
optimization problem, and this leads to difficulties in numerical implementations. To solve this problem, many scholars pay
much attention to studying the variants of the standard Lagrangian. The augmented Lagrangianmethodwas initiated in [10,
19] for solving nonlinear programming with only equality constraints and was generalized in [20–22] to include inequality
constrained problems. For more details on proximal augmented Lagrangian method we refer to [1] or [2]. Besides these,
Polyak and his collaborators have developed many nonlinear Lagrangians for solving nonlinear programming problems,
for instance, see [8,14–18]. Among them, Polyak (2001) [16] constructed a nonlinear Lagrangian based on the Log-Sigmoid
function for solving nonconvex NLP problems.
In this paper, we focus on the study of the following nonlinear Lagrangian for (NLSOP):

G(x, ζ , u, t) = f (x)− 〈ζ , h(x)〉 + (2t)−1‖h(x)‖2 + t
J∑
j=1

〈ψLS(−t−1g j(x)), uj〉, (1.3)

where

ψLS(w) = 2(ln(1+ eλ
w
1 )− ln 2)cw1 + 2(ln(1+ e

λw2 )− ln 2)cw2 (1.4)

is the Löwner operator associated Log-Sigmoid functionψLS(s) = 2(ln(1+ es)− ln 2) for s ∈ R. We will extend the results
in [16] to the case of nonlinear optimization problems with second-order cone constraints and equality constraints.
We should point out that, for the proximal augmented Lagrange method, Liu and Zhang [12] discussed the rate of

convergence for nonconvex semidefinite programming when the strict complementarity is satisfied and Liu and Zhang [13]
studied its rate of convergence without strict complementarity condition.
This paper is organized as follows. In Section 2,wediscuss properties of the Log-Sigmoid Löwner operator. In Section 3,we

introduce a set of basic assumptions needed for the convergence analysis and discuss properties of the nonlinear Lagrangian
G(x, ζ , u, t). In Section 4, we focus on analyzing the rate of convergence of the Log-Sigmoid nonlinear Lagrange method
under the given conditions. Finally, in Section 5, we report numerical results implemented by the Log-Sigmoid nonlinear
Lagrange method.
The following notations and terminologies are used throughout the paper. If F is differentiable at (x, y) ∈ Rn×Rm, then

we use JF(x, y) (respectively, JxF(x, y)) to denote the derivative of F at (x, y) (respectively, the partial derivative of F at
(x, y)with respect to x) and ∇F(x, y) := JF(x, y)∗ the adjoint of JF(x, y) (respectively, ∇xF(x, y) := JxF(x, y)∗ the adjoint
of JxF(x, y)). Moreover, if F is twice differentiable at (x, y) ∈ Rn ×Rm, we define

∇
2F(x, y) := J(∇F)(x, y), ∇2xxF(x, y) := Jx(∇xF)(x, y).

For any index set I ∈ {1, 2, . . . , J}, we denote by diag(Aj)j∈I the block diagonal matrix where its diagonal entries Aj are
arranged in the increasing order of j ∈ I . For any x, y ∈ Rn, the Euclidean inner product and norm are denoted by
〈x, y〉 = xTy, ‖x‖ =

√
xTx, respectively. For any two matrices C and D inRm×n, we write

〈C,D〉 := Tr(CTD), ‖C‖ =
√
Tr(CTC)

for the Frobenius inner product between C and D and the Frobenius norm, respectively, where ‘‘Tr’’ denotes the trace of a
square matrix.

2. The Log-Sigmoid Löwner operator

For any u = (u0; ū), v = (v0; v̄) inRm+1, we define their Jordan product as

u ◦ v = (uTv; v0ū+ u0v̄).

It is easy to check that e := (1; 0) ∈ Rm+1 is a unit element satisfying u ◦ e = e ◦ u = u for any u ∈ Rm+1. Then (Rm+1, ◦)
becomes a Jordan algebra, see [6]. For u ∈ Rm+1, its spectral decomposition is

u = λu1c
u
1 + λ

u
2c
u
2 , (2.1)
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