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a b s t r a c t

In this paper a class of weakly singular Volterra integral equations with an infinite set of
solutions is investigated. Among the set of solutions only one particular solution is smooth
and all others are singular at the origin. The numerical solution of this class of equations
has been a difficult topic to analyze and has received much previous investigation. The
aim of this paper is to improve the convergence rates by a graded mesh method. The
convergence rates are proved and a variety of numerical examples are provided to support
the theoretical findings.
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1. Introduction

In this paper we solve the following weakly singular equation

u(t) =
∫ t

0

sµ−1

tµ
u(s)ds+ g(t), t ∈ (0, T ], (1)

where µ > 0 and g is a given function. This class of equations arises in a certain type of heat conduction problems with
time dependent boundary conditions (see e.g., in [1]). The numerical solutions of the equations have been investigated by
several authors (see e.g., in [2,1,3–6]). The following analytical results of the solutions to (1) are given in [7].

(a) If 0 < µ ≤ 1 and g ∈ C1[0, T ] (with g(0) = 0 for µ = 1), Eq. (1) has an infinite set of continuous solutions which are
given by the formula

u(t) = c0t1−µ + g(t)+ γ + t1−µ
∫ t

0
sµ−2(g(s)− g(0))ds, (2)

where

γ =


g(0)
µ− 1

if µ < 1,

0 if µ = 1,

and c0 is an arbitrary constant. The set of solutions contain only one particular solution which belongs to C1[0, T ]
(corresponding to c0 = 0).
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(b) If µ > 1 and g ∈ Cm[0, T ] (m ≥ 0), the unique solution u ∈ Cm[0, T ] is

u(t) = g(t)+ t1−µ
∫ t

0
sµ−2g(s)ds.

Lima and Diogo [1,3] analyze the Euler method for solving Eq. (1) and obtain a convergence rate O(hµ) for 0 < µ ≤ 1,
where h stands for the maximum mesh size. Later Diogo et al. [4] used a coordinate transformation t = τ + ε where ε is
either a constant or a value depending on the mesh size h. They obtained a convergence rate like O(h/ε) which definitely
improves the previous results. However due to the fact that ε is not allowed to be too large, the convergence rate is still not
optimal. In this paper we try to apply graded meshes, which has been developed by Brunner [8](see also in [9]) for solving
integral equation with weakly singular convolutionary kernels, to the equation. We obtain for the Euler method on graded
mesheswith the grading exponent r ≥ 2 thatO(N−1) forµ ≥ 1,O(N−1 lnN) for 1/r ≤ µ < 1 andO(N−rµ) for 0 < µ < 1/r .
Throughout this paper, we use the letters C and c (or with subscripts) to denote generic positive constants which are

independent of the discretizing process.

2. Graded mesh method

For a positive integer N , define a mesh

ΠN = {t0, . . . , tN : 0 = t0 < t1 < · · · < tN = T },

by

tj = T
(
j
N

)r
, j = 0, . . . ,N, (3)

where the real number r ≥ 2, which is called the grading exponent, characterizes the nonuniformity of the mesh. The mesh
points are densely clustered near the origin. Let

hj = tj − tj−1, j = 1, . . . ,N; h = max
1≤j≤N

hj. (4)

It is easy to see that

hj ≤ h ≤
rT
N
, j = 1, . . . ,N

and
tj+1
tj
≤ 2r , j = 1, . . . ,N − 1. (5)

It follows by setting t = ti (i ≥ 1) in (1) that

u(ti) =
∫ ti

0

sµ−1

tµi
u(s)ds+ g(ti). (6)

In Euler method, we approximate u(s) on each subinterval [tj, tj+1] by u(tj). Define

Dj :=
∫ tj+1

tj
sµ−1ds =

tµj+1 − t
µ

j

µ
. (7)

Then the numerical scheme is given by

uNi = g(ti)+
1
tµi

i−1∑
j=0

DjuNj , i = 1, 2, . . . ,N, (8)

with uN0 = u(0).

Remark 2.1. In the case µ > 1 or µ < 1, u(0) = µ

µ−1g(0) (with c0 = 0); In the case µ = 1, g(0) ≡ 0, the value of u(0)
needs to be given in advance. Since h1 = T/N r and u ∈ C1[0, T ], we have

max
s∈[t0,t1]

|u(s)− u(t0)| ≤ T max
s∈[t0,t1]

|u′(s)|
1
N r
. (9)

Define the truncation error δ(N, ti) via

u(ti) = g(ti)+
1
tµi

i−1∑
j=0

Dju(tj)+ δ(N, ti), i ≥ 1. (10)
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