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1. Introduction

In this paper we solve the following weakly singular equation

t S,u71
u(t) :/ —u(s)ds+g(t), te(0,T], (1)
o ¢

where u > 0 and g is a given function. This class of equations arises in a certain type of heat conduction problems with
time dependent boundary conditions (see e.g., in [1]). The numerical solutions of the equations have been investigated by
several authors (see e.g., in [2,1,3-6]). The following analytical results of the solutions to (1) are given in [7].

(@) If0 < u < 1and g € C'[0, T] (with g(0) = 0 for & = 1), Eq. (1) has an infinite set of continuous solutions which are
given by the formula

t
u(t) =cot'" " +gO) +y + tl*“/ s“72(g(s) — g(0))ds, (2)
0
where
0
0
y=ypu-—-1
0 ifu=1,

and ¢q is an arbitrary constant. The set of solutions contain only one particular solution which belongs to C![0, T]
(corresponding to cg = 0).
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(b) If w > Tand g € C™[0, T] (m > 0), the unique solution u € C™[0, T] is

t
u(t) = g(6) +£'# / §42g (s)ds.
0

Lima and Diogo [1,3] analyze the Euler method for solving Eq. (1) and obtain a convergence rate O(h*) for0 < u < 1,
where h stands for the maximum mesh size. Later Diogo et al. [4] used a coordinate transformation t = 7 + € where € is
either a constant or a value depending on the mesh size h. They obtained a convergence rate like O(h/€) which definitely
improves the previous results. However due to the fact that ¢ is not allowed to be too large, the convergence rate is still not
optimal. In this paper we try to apply graded meshes, which has been developed by Brunner [8](see also in [9]) for solving
integral equation with weakly singular convolutionary kernels, to the equation. We obtain for the Euler method on graded
meshes with the grading exponentr > 2that O(N~") for > 1,0(N~'InN) for 1/r < u < 1andO(N~"#) for0 < u < 1/r.

Throughout this paper, we use the letters C and ¢ (or with subscripts) to denote generic positive constants which are
independent of the discretizing process.

2. Graded mesh method

For a positive integer N, define a mesh

Iy ={tg, ..., tn:0=tg <t; <---<ty=T},
by
jr
tt=T(=), j=0,...,N, 3
d (w) J (3)

where the real number r > 2, which is called the grading exponent, characterizes the nonuniformity of the mesh. The mesh
points are densely clustered near the origin. Let

hj=t—t_1, j=1,...,N; h= max h;. (4)
1<j<N

It is easy to see that
T

hh<h<—, j=1,...,N
i=N=y J
and
T _gr j=1,...,N—1. (5)
&
It follows by settingt = t; (i > 1) in (1) that
ti S;Lfl
u) = [ Trus + 8. (6)
0 i
In Euler method, we approximate u(s) on each subinterval [t;, t;1] by u(t;). Define
tit1 th o t?
D; ::/ sholds = ML T (7)
7 w

Then the numerical scheme is given by
1 i—1
W =gt)+ 7 ) D', i=12,...N, (8)
i j=0

with uf = u(0).

Remark 2.1. Inthecase u > loru < 1,u(0) = M%]g(O) (with ¢g = 0); In the case u = 1, g(0) = 0, the value of u(0)
needs to be given in advance. Since hy = T/N" and u € C'[0, T], we have

1
—u(t)| <T '(8)]—. 9
Serggﬁllu(s) u(ty)| < 5323’;]'”“% 9)

Define the truncation error §(N, t;) via

1 i—1 '
u(t) =g(t) + > Du(t) +8(N. &), i=1. (10)
=0

i
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