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a b s t r a c t

We provide a semilocal convergence analysis for certain modified Newton methods
for solving equations containing a non-differentiable term. The sufficient convergence
conditions of the corresponding Newton methods are often taken as the sufficient
conditions for the modified Newton methods. That is why the latter methods are
not usually treated separately from the former. However, here we show that weaker
conditions, as well as a finer error analysis than before can be obtained for the convergence
of modified Newton methods. Numerical examples are also provided.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this study, we are concerned with the problem of approximating a locally unique solution x? of an equation

F(x)+ G(x) = 0, (1.1)

where F is a Fréchet differentiable operator, G is a continuous operator both defined on the same convex subset of a Banach
space X with values in a Banach space Y .
A large number of problems in appliedmathematics and also in engineering are solved by finding the solutions of certain

equations. For example, dynamic systems are mathematically modeled by difference or differential equations, and their
solutions usually represent the states of the systems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation ẋ = Q (x) = F(x) + G(x), where x is the state. Then the equilibrium states are determined by
solving Eq. (1.1). Similar equations are used in the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns). Except in special cases, the most commonly
used solution methods are iterative—when starting from one or several initial approximations a sequence is constructed
that converges to a solution of the equation. Iteration methods are also applied for solving optimization problems. In such
cases, the iteration sequences converge to an optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general framework.
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We propose the modified Newton methods

xn+1 = xn − F ′(x0)−1(F(xn)+ G(xn)) (n ≥ 0) (1.2)

or

xn+1 = xn − L−1(F(xn)+ G(xn)) (n ≥ 0), L = F ′(x0)+ [x−1, x0;G] (1.3)

to generate a sequence {xn} approximating x?. Here, F ′(x) ∈ L(X, Y ), the space of bounded linear operators from X into Y
and [x, y;G] is a divided difference of order one for the operator G satisfying

[x, y;G](x− y) = G(x)− G(y) (1.4)

for all x 6= y [1,2].
Let us also define related Newton methods

xn+1 = xn − F ′(xn)−1(F(xn)+ G(xn)) (n ≥ 0) (1.5)

or

xn+1 = xn − L−1n (F(xn)+ G(xn)) (n ≥ 0), Ln = F ′(xn)+ [xn−1, xn;G]. (1.6)

The sufficient convergence conditions for faster Newton methods (1.5) and (1.6) already in the literature [2–21], (see also
Remarks 2.3 and 2.6) are also used for slower modified Newton methods (1.2) and (1.3). Here motivated by optimization
considerations we show that weaker sufficient conditions for the semilocal convergence of modified Newtonmethods (1.2)
and (1.3) can be obtained, by simply introducing center Lipschitz-type conditions (see (2.1)) instead of the stronger Lipschitz-
type conditions (see (2.18)) usually associated with methods (1.2), (1.3), (1.5) and (1.6). Numerical examples are provided
where ourweaker conditions are satisfied but the ones in the literature are not [2,19–21].We also note that if our conditions
hold but the stronger ones cannot, we can start with slower method (1.2) (or (1.3)) until a certain finite number of steps N
at which xN can be the initial guess of faster method (1.5) (or (1.6)), (since then the stronger hypotheses for Newtonmethod
(1.5) (or (1.6)) will then be satisfied). Such a work has already been done by us in [1,22,23] connecting modified Newton
method

xn+1 = xn − F ′(x0)−1(F(xn)) (n ≥ 0) (1.7)

to Newton method

xn+1 = xn − F ′(xn)−1F(xn) (n ≥ 0), (1.8)

or modified Newton method

xn+1 = xn − A(x0)−1(F(xn)) (n ≥ 0) (1.9)

to

xn+1 = xn − A(xn)−1F(xn) (n ≥ 0), (1.10)

where A(x) ∈ L(X, Y ) is an approximation to F ′(x) (see also [22–24]).
There is an extensive literature for methods (1.2), (1.3) and (1.5)–(1.10). A survey of such results can be found in [1] (see

also [2–25]). Iteration (1.5) was first treated in [21]. A finer convergence analysis was later provided in [1,4–6,19,20,22–25].
Qi in [13,14] provided a local as well as a semilocal convergence analysis on Ri of Newton method (1.8) using directional
derivatives, BD-regularity, and locally Lipschitzian functions F . A natural damping ofNewtonmethod for nonsmoothNewton
method (1.8) via the path search was presented in [15]. The q-quadratic convergence was also established in the same
reference. Han et al. [9] studied the damped Newton and Gauss methods using directional and Clarke derivatives. Dingguo
et al. in [8] studied large size equations on Ri, and also provided a way of controlling the residuals appearing in Newton
method (1.8), when F ′ is replaced by ∇F , the gradient of F . A locally convergence analysis was provided in [16,17], where
F : Ri → Ri is locally Lipschitz continuous. The super-linear convergence of Newton method (1.8) was shown in [6] by
using one sided directionally differentiable operators F .

2. Semilocal convergence analysis of modified Newton methods (1.2) and (1.3)

We need a result from [20, p 673].

Lemma 2.1. Let T be an operator which is defined on U(x0, R) = {x ∈ X : ‖x − x0‖ ≤ R} ⊆ X with values in Y , and which
satisfies a Lipschitz condition

‖T (x)− T (y)‖ ≤ v(r)‖x− y‖, for all x, y ∈ U(x0, r), and all r ∈ [0, R],

for some non-decreasing function v(r) on [0, R]. Then, the following hold true:

‖T (x+ h)− T (x)‖ ≤ γ (r + ‖h‖)− γ (r), for all x ∈ U(x0, r), ‖h‖ ≤ R− r,
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