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a b s t r a c t

Computational applications of the nonextensive entropy Sq and nonextensive statistical
mechanics, a current generalization of the Boltzmann–Gibbs (BG) theory, are briefly
reviewed. The corresponding bibliography is provided as well.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Entropy is an ubiquitous concept [1]. Indeed, it emerges in both conservative and dissipative systems, in physical as well
as nonphysical contexts. This comes from the fact that it is a functional of probability distributions, and can therefore be
used with profit in a considerable variety of manners, for natural, artificial and even social systems. The concept of entropy
naturally emerges in statistical mechanics, one of the most important theoretical approaches in contemporary physics.
Specifically, Boltzmann–Gibbs (BG) statistical mechanics is essentially based on a specific connection between the Clausius
thermodynamic entropy S and the set of probabilities {pi} (i = 1, 2, . . . ,W ) of themicroscopic configurations of the system.
This connection is provided by the Boltzmann–Gibbs (or Boltzmann–Gibbs–von Neumann–Shannon) entropy SBG defined
(for the discrete case) through

SBG = −k
W∑
i=1

pi ln pi, (1)

where k is a positive constant, the most usual choices being either the Boltzmann constant kB, or just unity (k = 1).
This entropic functional and its associated statistical mechanics address a large amount of interesting systems, and have

been successfully used along over 130 years. However, very many complex systems escape to its domain of applicability. As
an attempt to improve the situation, a generalization of Eq. (1) was proposed in 1988 [2]. See Table 1, where the q-logarithm
is defined as

lnq x ≡
x1−q − 1
1− q

(x > 0; q ∈ R; ln1 x = ln x), (2)

the inverse function, the q-exponential, being

exq ≡ [1+ (1− q)x]
1
1−q
+ (q ∈ R; ex1 = e

x), (3)

with [z]+ = z if z ≥ 0, and zero otherwise. We verify that lnq exq = e
lnq x
q = x,∀x.
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Table 1
The nonadditive entropy Sq (q 6= 1), and its particular, additive, limiting case SBG = S1

Entropy Equal probabilities (pi = 1/W ,∀i) Arbitrary probabilities (
∑W
i=1 pi = 1)

q = 1 SBG = k lnW SBG = −k
∑W
i=1 pi ln pi = k

∑W
i=1 pi ln

1
pi

∀q Sq = k lnqW Sq = k
1−

∑W
i=1 p

q
i

q−1 = k
∑W
i=1 pi lnq

1
pi

If we consider a system composed by two probabilistically independent subsystems A and B, i.e., pA+Bij = p
A
i p
B
j ∀(ij), we

straightforwardly verify that

Sq(A+ B)
k

=
Sq(A)
k
+
Sq(B)
k
+ (1− q)

Sq(A)
k
Sq(B)
k
. (4)

Therefore, SBG is additive [3], and Sq (q 6= 1) is nonadditive. The entropy Sq leads to a natural generalization of BG
statistical mechanics, currently referred to as nonextensive statistical mechanics, [2,4,5]. The nonextensive theory focuses
on nonequilibrium stationary (or quasi-stationary) states in the same way the BG theory focuses on thermal equilibrium
states. Recent reviews of the theory and its various applications (see, for instance, [6] for a recent review of astrophysical
applications, whose lines the present review partially follows) can be found in [7–9], and a regularly updated bibliography
is available at [10].

2. Extensivity of the nonadditive entropy Sq

From its very definition, additivity depends only on the functional form of the entropy. Extensivity also depends on
the system. Indeed, the entropy S(N) of a given system composed by N (independent or correlated) elements is said
extensive if limN→∞ S(N)/N is finite, i.e., if S(N) scales like N for large N , hence matching the classic thermodynamic
behavior. Consequently, for systems whose elements are independent or weakly correlated, SBG is extensive, whereas Sq
is nonextensive for q 6= 1. There are, in constrast, systems whose elements are strongly correlated, having as a consequence
that Sq is extensive only for a special value of q, noted qent , with qent 6= 1. In other words, Sq is nonextensive for any value of
q 6= qent . In particular, for such anomalous systems, SBG is nonextensive, hence inadequate for thermodynamical purposes
at the limit N → ∞ (thermodynamic limit). There are finally systems that are even more complex, and for which there
is no value of q such that Sq(N) is extensive. Such strongly anomalous systems remain outside the realm of nonextensive
statistical mechanical concepts, and are not addressed here.
Abstract probabilistic models with either qent = 1 or qent 6= 1 are exhibited in [11]. Physical realizations are exhibited

in [12] for strongly entangled systems. For example, the block entropy of magnetic chains in the presence of a transverse
magnetic field at its critical value and at T = 0, belonging to the universality class characterized by the central charge c [13],
yield [12]

qent =

√
9+ c2 − 3
c

(c > 0). (5)

Therefore, for the one-dimensional Ising model with short-range interactions (hence c = 1/2), we have qent =
√
37− 6 '

0.08, and for the one-dimensional isotropic XY model with short-range interactions (hence c = 1), we have qent =√
10− 3 ' 0.16. At the c →∞ limit, we recover the BG value qent = 1 (qent = 1/2 for c = 4; see [14] for c = 26).

3. Entropy production per unit time

Let us illustrate on one-dimensional unimodal nonlinear dynamical systems xt+1 = f (xt) some interesting concepts,
namely that of sensitivity to the initial conditions and that of entropy production per unit time. A system is said strongly chaotic
(or just chaotic) if its Lyapunov exponent λ1 is positive, andweakly chaotic if it vanishes. The sensitivity to the initial conditions
ξ is defined as

ξ(t) ≡ lim
∆x(0)→0

∆x(t)
∆x(0)

. (6)

If λ1 > 0, we typically have

ξ(t) = eλ1t . (7)

The entropy production per unit time K1 in such a system is defined as

K1 ≡ lim
t→∞

lim
W→∞

lim
M→∞

SBG(t)
t

, (8)
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