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a b s t r a c t

In this paper a novel technique for obtaining the amplitude and phase of optical pulses with time extents
as short as tens of ps is presented. The method which is based on the transport-of-intensity equation only
requires, for a practical realization, of passive fiber optic devices. It employs as the main component a
dispersive element with a known second order dispersion coefficient. Two different setup implementa-
tions are considered, for which simulations are carried out in order to test the method performance tak-
ing into account both, realizable models of the involved devices and typical pulses found in optical
transmission systems. The characterization of optical pulses affected by dispersion and nonlinear effects,
such as self-phase modulation, is used to evaluate the performance of the method and show the practical
feasibility of the future implementation.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

All-optical signal processing techniques have taken the atten-
tion of the photonics and optical communications scientific com-
munity because of its potential advantages regarding aspects
such as high processing bandwidth and immunity to electromag-
netic interference [1]. The use of passive optical devices translates
into simpler and more economic systems than the active optoelec-
tronic counterpart, and obviously but worth mentioning, there is
no energy consumption in the process. In recent years, many opti-
cal devices have been proposed for switching, filtering and coding
signals typically found in optical communication and microwave-
photonics scenarios [2,3].

In fiber optic applications, there is much interest in the charac-
terization of optical pulses since the deployment of high bit rate
transmission systems which use coherent detection methods that
require to estimate the phase value in the demodulation process,
e.g. optical pulses present in advanced modulation formats such
as QPSK or 16 QAM. Another important use of optical phase recov-
ery methods is in sensing applications, to increase the sensitivity
and range of operation fiber optic sensors.

During the 90’s, several methods have been proposed to mea-
sure the phase of an ultrashort optical pulse and some of them

were even converted into commercial devices (Chilla y Martínez
[4], Kane y Trebino [5], O’Shea y Trebino [6], Iaconis y Walmsley
[7]). Along this development process, also emerged techniques that
due to the procedure and/or the technology used for their imple-
mentation, they are only capable of measuring the amplitude and
phase of pulses with durations in the order of picoseconds. In
1993 it was presented a method called chronocyclic tomography
[8] which determines the phase of a pulse from the reconstruction
of its associated Wigner Distribution Function (WDF) employing
tomographic measurements of the spectrum. In the year 2003,
from the base of the latter technique, Dorrer and Kang [9] pre-
sented a method which allows to obtain the phase from spectrum
measurements of the pulse after being passed through a phase
modulator in the temporal domain. That same year, Alieva et al.
[10,11], introduced a way to reconstruct the amplitude and the
phase of a signal, utilizing measurements of the squared modulus
of the fractional Fourier transform with close fractional orders.

In this paper, we present a technique for pulse characterization
based on the transport-of-intensity equation and propose a scheme
for its photonic implementation which uses only passive fiber optic
devices.

2. Signal recovery method

The method here presented is derived from the relationship
between the first order WDF moment of a given signal and the
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instantaneous frequency m(t) or, equivalently, the first order deriv-
ative of the signal phase. This relationship can be written as
Z þ1

�1
xWuðt;xÞdx ¼

@uðtÞ
@t
juðtÞj2; ð1Þ

being Wuðt;xÞ the WDF associated to a signal u(t) = |u(t)|exp(ju(t))
which can be alternatively defined as

Wuðt;xÞ ¼
Z þ1

�1
uðt þ s=2Þu�ðt � s=2Þe�jxsds

¼ 1
2p

Z þ1

�1
Uðxþx0=2ÞU�ðx�x0=2Þe�jx0tdx0; ð2Þ

where U(x) means the Fourier transform of u(t). On the other hand,
the WDF associated to a signal uf(t) whose spectral phase has been
quadratically modulated as Uf(x) = U(x)exp(�jU2x2/2) is equal to
the WDF associated to the original signal u(t), but affected by a tem-
poral shear. This property is expressed as

Wuf
ðt;xÞ ¼Wuðt �U2x;xÞ; ð3Þ

where Wu and Wuf
are the WDFs associated to the original and the

filtered signals, respectively. The temporal optical power of the
modulated signal can be written in terms of its associated WDF as

Iuf
ðtÞ ¼ juf ðtÞj2 ¼

Z þ1

�1
Wuf
ðt;xÞdx ¼

Z þ1

�1
Wuðt �U2x;xÞdx:

ð4Þ

By differentiating (4) with respect to the modulation coefficient
it results

@Iuf
ðtÞ

@U2
¼
Z þ1

�1

@

@U2
Wuðt �U2x;xÞdx; ð5Þ

and by performing the variable change t0 = t �U2x, Eq. (5) can be
rewritten as

@Iuf
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@U2
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Now, by taking into account that the variations of the WDF with
respect to t and t0 are identical, i.e. oWu/ot0 = (oWu/ot)(ot/ot0) = oWu/
ot, Eq. (6) becomes @Iuf

ðtÞ=@U2 ¼ �ð@=@tÞ
Rþ1
�1 xWuðt;xÞdx. By

replacing Eq. (1) into this last expression, it yields

@Iuf
ðtÞ
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¼ � @
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@t

� �
: ð7Þ

Eq. (7), sometimes referred as the temporal transport-of-inten-
sity equation, has been used to measure temporal phase shifts
induced by self-phase modulation or cross-phase modulation
[12], and is the fundament of the method here presented which
can be considered as the temporal domain analogue of an spectral
approach proposed by Dorrer et al. [9]. Although Eq. (7) was
derived from a WDF property, an approach based directly on the
transport-of-intensity equation might also be used to obtain the
same expression. There is an important issue regarding the unique-
ness of the retrieved phase from the transport-of-intensity equa-
tion, that needs to be mentioned. Although the recovered phase
is unique under a linear propagation condition, it has been shown
that the solution has an ambiguity when there are zeros in the
intensity distributions [13].

From Eq. (7) it is possible to recover the phase of a given signal.
Nevertheless, in order to obtain a feasible and easily attainable
procedure, some approximations should be made. First, the deriv-
ative with respect to the modulation coefficient can be replaced by
a centered finite difference approximation as

@Iuf
ðtÞ

@U2
ffi

Iuf
ðtÞ
���
U2

� Iuf
ðtÞ
���
�U2

2U2
: ð8Þ

The quadratic spectral phase modulation can be produced by
transmission of the signal through an optical fiber, being U2 the
second order dispersion coefficient at the central angular fre-
quency x0, multiplied by the fiber length. This may be understood
by analyzing the propagation of a light pulse through a nonlinear
dispersive medium under a slow envelope approximation and con-
sidering that the nonlinear response is instantaneous, and weak, in
order to apply a first-order perturbation theory. This situation, can
be modeled employing the nonlinear Schrödinger equation which
is shown as Eq. (9).

@u
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þ j

b2

2
@2u
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6
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a
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u ¼ �jcjuj2u ð9Þ

being b2 and b3 the second and third order dispersion (TOD) coeffi-
cients, respectively, a the attenuation coefficient, c the nonlinear
parameter, and s = t � z/vg = t � b1z the time reference moving with
the pulse at group velocity (traveling-wave coordinate system). Eq.
(9), under typical conditions of propagation through a short length
optical fiber (attenuation term might be discarded since az � 0), can
be simplified to Eq. (10a) or to its spectral version, Eq. (10b), by
neglecting the TOD term due to its usually much smaller value than
the second order one (b3Dx33� b2Dx2, being Dx the spectral
width of the pulse), and considering a linear regime case when
the optical power value is low enough (c|u|2 � 0).
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Finally, Eq. (10b) or its form after integration, U(z,x) = U(0,x)
exp(jb2x2z/2), shows how transmission of the signal u(t) through
an optical fiber of length z having second order dispersion coeffi-
cient b2 may be used to achieve the quadratic spectral phase mod-
ulation needed to implement Eq. (8), being U2 = �b2z. Another
implementation of such spectral phase modulation is the use of
the reflection characteristic of a linearly chirped fiber Bragg grating
(LCFBG) with dispersion parameter or group delay slope U2.

In this way, the temporal optical power derivative can be imple-
mented by two temporal detections of the signal, each one affected
by the same amount of second order dispersion, but having oppo-
site signs. Taking advantage of this implementation, the optical
power IuðtÞ can be approximated by the average of the two detec-
tions of the dispersed signal as

IuðtÞ ffi
Iuf
ðtÞ
���
U2

þ Iuf
ðtÞ
���
�U2

2
: ð11Þ

It is worth noting that Eqs. (8) and (11) are only valid whenever
the second order dispersion coefficient U2 remains small. Thus, in
order to find the restrictions for U2, lets consider a pulse with tem-
poral and spectral widths Dt and Dx, respectively, being both
symmetrical in a first approach. Since U2 is equal to the tangent
of the shearing angle of the WDF domain produced by the qua-
dratic spectral phase modulation, it can be easily shown that the
second order dispersion coefficient should be much lower than
the ratio of the temporal width to the spectral width; i.e.,

U2>Dt=Dx: ð12Þ

Fig. 1 shows two different implementations of the system pro-
posed for recovering the amplitude and phase information of a
pulse. The schematic diagram of Fig. 1(a) uses two single mode
optical fibers (SMF), a standard one and a dispersion compensating
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