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1. Statement of the problem

Let V,, be a shift-invariant space in L?(R) with stable generator ¢ € [*(R), i.e,,

V= {f(t) =Y ay@(t—n):{a,} € £(2) | C *(R).
nez

Nowadays, sampling theory in shift-invariant spaces is a very active research topic (see, for instance, [1-4,9,17,18] and the
references therein) since an appropriate choice for the generator ¢ (for instance, a B-spline) eliminates most of the problems
associated with the classical Shannon’s sampling theory [16].

Suppose that a linear time-invariant system £ is defined on V,,.. Under suitable conditions, Unser and Aldroubi [3,15]
have found sampling formulas allowing the recovering of any function f € V,, from the sequence of samples {(L£f) (1) }nez-
Concretely, they proved that for any f € V,,

JO =Y LISt —n)., tekr, (1)

nez
where the sequence {S(t — n)},ez is a Riesz basis for V,,. Even when the generator ¢ has compact support, rarely the same
occurs with the reconstruction function S in formula (1). Recall that a reconstruction function S with compact support in
(1) implies low computational complexities and avoids truncation errors. A way to overcome this difficulty is to use the
oversampling technique, i.e, to take samples with a sampling period T < 1. This is the main goal in this paper: Assuming that
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the generator ¢ and the impulse response of the linear system £ have compact support, we derive stable sampling formulas
which allow us to recover any f € V,, from the samples {(Lf) (T;n)}ncz, Where the sampling period is T := (s — 1)/s < 1
for some s € {2, 3, ...}. This is done in Sections 2 and 3 in the light of the generalized sampling theory obtained in [10] by
following an idea of Djokovic and Vaidyanathan in [9].

For the sake of notational ease we have assumed that only samples from one linear time-invariant system .£ are available.
Analogous results are still valid in the case of several systems. In [7], a different but related question is studied: Roughly
speaking, assuming that ¢ has compact support a system £ with impulse response compactly supported is found in order
to recover any function in V,, by using the generator itself as the reconstruction function.

Besides, shift-invariant spaces are important in a number of areas of analysis. Many spaces, encountered in approximation
theory and in finite element analysis, are generated by the integer shifts of a function ¢. Shift-invariant spaces also play a
key role in the construction of wavelets [13]. In each of these applications, one is interested in how well a general smooth
function (in a potential Sobolev space) can be approximated by the elements of the scaled spaces o,,V,, := {f(:/h) : f € V,}
(see [5] and the references therein). A cornerstone in this theory are the Strang-Fix conditions for the generator ¢ [ 14].

On the other hand, as pointed out by Lei et al. in [12], there are many ways to construct approximation schemes
associated with shift-invariant spaces. Among them, they cite cardinal interpolation, quasi-interpolation, projection and
convolution (see the references in [12]). They unify these approaches in a systematic way by viewing all as special cases
of the approximation scheme induced by an integral operator. Borrowing a result in [12], in Section 4 we prove that the
oversampled formulas with compactly supported reconstruction functions obtained in Section 3 give “good” approximation
schemes with respect to the sup norm.

2. A sampling formula in the oversampling setting

From now on, the function ¢ € I?(R) is a stable generator for the shift-invariant space

Vo= 1f(©) =Y anp(t —n) : {a,} € £(2)} CL*(R),

nez

i.e., the sequence {¢(- —n)}nez is a Riesz basis for V,,. A Riesz basis in a separable Hilbert space is the image of an orthonormal
basis by means of a bounded invertible operator. Recall that the sequence {¢(- — n)}ne is a Riesz basis for V,, if and only if
0<2llo = I2llec < 00,

where | ¢|o denotes the essential infimum of the function &(w) = Y, [@(w + k)|? in (0, 1), and || ¢ its essential
supremum. Furthermore, || #||p and || ||, are the optimal Riesz bounds [6, p. 143].

We assume throughout the paper that the functions in the shift-invariant space V,, are continuous on R. Equivalently, the
generator ¢ is continuous on R and the function 3", |¢(t — n)|? is uniformly bounded on R (see [18]). Thus, any f € V,, is
defined as the pointwise sumf(t) = }_,, a,¢(t—n) onR. Besides, V,, is a reproducing kernel Hilbert space where convergence
in the I?(R)-norm implies pointwise convergence which is uniform on R (see [10]).

The space V,, is the image of L?(0, 1) by means of the isomorphism 7, : L2(0, 1) — V,, which maps the orthonormal basis
{e~2mimw} . for [2(0, 1) onto the Riesz basis {¢(t — n)}xcz for V,. Namely, for each F € [2(0, 1) the function T,F € V,, is given
by

(TP =D (F(), e ™)o@t —n), teR. (2)

nez

Suppose that £ is a linear time-invariant system defined on V,, of one of the following types (or a linear combination of
both):

(a) The impulse response h of .£ belongs to L' (R) N L?(R). Thus, for any f € V, we have

N © =1 5O = [ O;f(X)h(t _xdx, teR.

(b) £ involves samples of the function itself, i.e., (Lf)(t) = f(t + d), t € R, for some constant d € R.

For afixed s € {2, 3, ...}, consider T, = (s — 1) /s < 1. The first goal is to recover any function f € V,, by using a frame
expansion involving the samples {(Lf)(Tsn)},cz. This can be done in the light of the generalized sampling theory developed
in [10]. Indeed, since the sampling points Tin, n € Z, can be expressed as

{Tsn}nez = {(5 - 1)” + (l - 1)Ts}nez,j=1,2,..4.57

the initial problem is equivalent to the recovery of f € V,, from the samples

{Lif (s = D) }nezj=1.2....5

where the linear time-invariant systems .£;,j = 1, 2, ..., s, are defined by

(LiH®) =(LOt+(G—DT], teR.
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