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a b s t r a c t

Explicit time integration methods can be employed to simulate a broad spectrum of
physical phenomena. The wide range of scales encountered lead to the problem that the
fastest cell of the simulation dictates the global time step. Multirate time integration
methods can be employed to alter the time step locally so that slower components take
longer and fewer time steps, resulting in a moderate to substantial reduction of the
computational cost, depending on the scenario to simulate [S. Osher, R. Sanders, Numerical
approximations to nonlinear conservation laws with locally varying time and space grids,
Math. Comput. 41 (1983) 321–336; H. Tang, G. Warnecke, A class of high resolution
schemes for hyperbolic conservation laws and convection-diffusion equationswith varying
time and pace grids, SIAM J. Sci. Comput. 26 (4) (2005) 1415–1431; E. Constantinescu,
A. Sandu, Multirate timestepping methods for hyperbolic conservation laws, SIAM J. Sci.
Comput. 33 (3) (2007) 239–278]. In air pollution modeling the advection part is usually
integrated explicitly in time, where the time step is constrained by a locally varying
Courant–Friedrichs–Lewy (CFL) number. Multirate schemes are a useful tool to decouple
different physical regions so that this constraint becomes a local instead of a global
restriction. Therefore it is of major interest to apply multirate schemes to the advection
equation. We introduce a generic recursive multirate Runge–Kutta scheme that can be
easily adapted to an arbitrary number of refinement levels. It preserves the linear invariants
of the system and is of third order accuracy when applied to certain explicit Runge–Kutta
methods as base method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Modern air pollutionmodels can be used to simulate the evolution of concentrations of contaminants in the atmosphere.
The relevant processes can be described by partial differential equations (PDE) of advection-diffusion-reaction type which
can be efficiently approximated by conservative high order spatial discretization methods with implicit/explicit time
integration.
For the advection equation

∂

∂t
c +

∂

∂x
(uc) = 0, (1)

describing transport of contaminants in air pollution models, explicit Runge–Kutta (ERK) time integration methods have
proven to be very efficient. All of these methods have in common that stability requirements limit the global time step to
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be smaller than some critical value proportional to the ratio of grid size and the magnitude of the wind speed for each cell
[2,7,14].
In realistic scenarios there are usually regions of interest such as urban areas which have to be examined more closely

than the surrounding area, e.g. woodland or agricultural regions. Therefore the spatial grid in these regions is refined [3,4].
Additionally even for equidistant grids the wind speed may vary considerably across the entire domain. Thus the smallest
cell, ormore exactly the cell with the smallest characteristic time determines the global time step.Multirate time integration
methods can be employed to adapt the time step locally so that slower components take longer and fewer time steps,
resulting in a moderate to substantial reduction of the computational cost, depending on the scenario to simulate [5].
Themultirate schemewe shall introduce is intended to be implemented in a complex three-dimensional weathermodel.

This model shall also employ local refinement strategies and must allow for strongly varying wind speeds. Cell size ratios
up to 1:16 and wind speeds of some m/s at ground level in contrast to approximately 100 m/s in large altitudes may lead
to characteristic times per cell varying by several orders of magnitude. Therefore the use of a multirate time integration
scheme is crucial for efficient computation.
Multirate approaches have been developed since the early 1980s. Osher and Sanders [11] presented a scheme allowing

multirate Euler steps.More current approaches allow for awide variety ofmultirate schemes by proposing genericmultirate
methods based on traditional ERKs. In 2005 Tang and Warnecke [12] proposed different multirate schemes which can be
generalized to support arbitrary ERKs as basemethod. The resulting schemes however are notmass preserving. The approach
of Constantinescu and Sandu [2] yields multirate ERK schemes which are mass preserving and at most of second order
accuracy.
The approach discussed in this paper borrows ideas from an implicit–explicit splitting scheme introduced in [10], where

explicit Runge–Kuttamethods are combinedwith an arbitrary implicit time integrator. In contrast to themethodsmentioned
above this newmethod is basedon a right-hand side splitting andnot on a splitting by components. Applied to thediscretized
advection equation this means that it is based on a splitting of the fluxes instead of flux differences per cell. The newmethod
is called Recursive Flux Splitting Multirate (RFSMR).
Themain part of this paper, Section 2, is dedicated to the introduction and order analysis of RFSMR. In particular we shall

show that the scheme is second order accurate for second order base methods. Furthermore we prove that the third order
methods from Knoth and Wolke [10] can be extended to a third order method in the new context. The order analysis will
be carried out in the context of partitioned Runge–Kutta methods (PRK). Afterwards, in Section 3 we will present spatial
discretizations of the advection equation. A decomposition approach beneficial for the new schemes will be outlined in the
context of block structured grids. In Section 4 we will perform numerical tests affirming both stability and accuracy as well
as efficiency of this novel class of multirate schemes.

2. Explicit Runge–Kutta multirate scheme based on a right-hand side splitting

Themultirate scheme is derived from a splitting of the right-hand side of the differential equation in two parts as follows

w′ = F(w)+ G(w), w(0) = w0, w ∈ RN . (2)

Starting point is an implicit–explicit (IMEX) integration method introduced in [10] for the efficient solution of advection-
diffusion-reaction equations in air pollution. For air pollutionmodels theG term then represents the non-stiff advection part
which can be solved using explicit methods. Opposed to this the F term represents the stiff diffusion-reaction part which
must be solved using implicit methods. In the cited IMEX scheme the non-stiff, explicit part is integrated by an explicit
Runge–Kutta method, the integration method for the stiff part is undetermined. For the theoretical analysis of the method
it is assumed that this integration is carried out exactly. In [10] the IMEXmethod applied to (2) is presented in a generalized
Butcher-like tableau. For a given time step1t the method reads as follows:

w1 = w(tn), (3)

wi = vi(c̃i1t) with (4)
dvi
dτ
=
1
c̃i
ri + F(vi), τ ∈ [0, c̃i1t], vi(0) = wi−1, i = 2, . . . , s+ 1 (5)

ri =
i−1∑
j=1

ãijG(wj), (6)

w(tn +1t) = ws+1, (7)

assuming that in each stage the underlying differential equation (5) with the non-discretized implicit term F is integrated
exactly. If the implicit term F ≡ 0 we obtain the underlying classic explicit Runge–Kutta method which we will call the
outer method:

w1 = w(tn) (8)
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