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a b s t r a c t

Let Ω ⊂ RN (N > 1) be a bounded domain. In this work we are interested in finding a
renormalized solution to the following elliptic system{

−div[A1(u2)∇u1] = f , in Ω

−div[A2(u2)∇u2] + g(u2) = A3(u2)∇u1 ∇u1, in Ω,
(1)

where the diffusion matrix A2 blows up for a finite value of the unknown, say u2 = s0 < 0.
We also consider homogeneous Dirichlet boundary conditions for both u1 and u2. In these
equations, u1 is anN-dimensional magnitude, whereas u2 is scalar; A2 : Ω×(s0,+∞) 7→ RN

is a semilinear coercive operator. The symmetric part of the matrix A3 is related to the one
of A1. Nevertheless, the behaviour of these coefficients is assumed to be fairly general.
Finally, f ∈ H−1(Ω)N , and g : Ω × (s0,+∞) 7→ R is a Carathéodory function satisfying the
sign condition.

Due to these assumptions, the framework of renormalized solutions for problem (1) is
used and an existence result is then established.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The analysis of system (1) is motivated by the steady state of the so-called k–ε turbulence model. This model was first
introduced by Launder and Jones in 1972 [14]. In the k–ε turbulence model, the eddy viscosity coming from the averaged
Navier–Stokes equations is written in terms of two new scalar variables: k, the turbulent kinetic energy, and ε, the dissipation
of k. In the incompressible case, this model takes the following form

∂w
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)
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]
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div w = 0, (3)
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]
+ c3
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k
= c2k

∣∣∣∇w+∇wT
∣∣∣2 . (4)

The coefficients cµ, c1, c2, c3 ∈ R are experimentally determined. The reader interested in a detailed description of the model
is referred to [15].

∗ Corresponding author.
E-mail addresses: concepcion.garcia@uca.es (C. García Vázquez), francisco.ortegon@uca.es (F. Ortegón Gallego).

0377-0427/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2008.04.007

http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:concepcion.garcia@uca.es
mailto:francisco.ortegon@uca.es
http://dx.doi.org/10.1016/j.cam.2008.04.007


C. García Vázquez, F. Ortegón Gallego / Journal of Computational and Applied Mathematics 229 (2009) 452–461 453

There is no result granting the existence of a solution to system (2)–(4) together with suitable boundary conditions. In
fact, there are only some partial existence results isolating the difficulties associated to these equations.

In [10] and [11], the authors studied an elliptic equation which fits (4), assuming that both w and k are known, and with
a boundary Dirichlet condition of the form ε = ε̄. There are two remarkable difficulties arising in this problem. Firstly, since
we consider w ∈ H1(Ω)N and k ∈ L∞(Ω) as input data, the term k

∣∣∇w+∇wT
∣∣2 in (4) belongs to L1(Ω). Secondly, taking

u2 = ε− ε̄ to obtain a homogeneous Dirichlet boundary condition, it can be checked that the diffusion coefficient blows up
when u2 = −ε̄. Consequently, the term A2(u2)∇u2 is non-determined on this set and the search for weak solutions is not
well-suited in this context. For this reason we use the framework of renormalized solutions. A renormalized solution for a
parabolic problem like (4) was also discussed in [12].

This notion was first introduced by DiPerna and Lions, in [8], in the context of the Fokker–Planck–Boltzmann equation.
Later on, it has been profusely used by many others authors for linear and nonlinear elliptic or parabolic problems (see, for
example, [5,7,2] or [1]). It has also been applied to the study of nonlinear elliptic problems when the diffusion coefficient
has a singularity for a finite value of the unknown [3,4].

In the present work, we analyze the coupling of the steady-state equation (4) with Eq. (2). Actually, we must face new
difficulties. Another singular coefficient may appear in (2) (see Ref. [13]) though we do not consider here that situation. But,
even more important, when dealing with the pressure term it is necessary to establish A1, A3 ∈ L∞(Ω)N (see also [13]) in
order to avoid a mixed variational formulation. Then we prefer to consider system (1) which should be understood as an
intermediate problem arising in the analysis of the whole k–ε turbulence model. In these equations, the pressure term and
the continuity equation are both dropped but some references involving this kind of argument can be found in [9].

This paper is organized as follows. Firstly, we give some known results which are used in this work. In Section 3, we
enumerate the assumptions on data. In Section 4, we introduce the notion of a (renormalized) solution of system (P1) and
finally in Section 5, the existence result is established.

2. Some preliminary results

System (1) describes the coupling between an N-dimensional equation and a scalar one. Actually, the right-hand side in
the second equation must be understood as an inner product in RN×N which is defined as follows

∀A, B ∈ RN×N, A : B = tr(BtA),

and the meaning of A3(u2)∇u1∇u1 is A3(u2)∇u1 : ∇u1.
Besides, 〈·, ·〉 stands for the duality product between H−1(Ω)N and H1

0(Ω)N functions. Finally, AS/2
i is the unique symmetric

positive definite square root of matrix AS
i , the symmetric part of Ai.

Throughout this paper, for every j > 0, Tj(s) will denote the truncation function at height j, that is Tj(s) = sgn s min(j, |s|),
whereas sgn is the sign function. We also introduce the function Gj(s) as follows

Gj(s) = Tj+1(s)− Tj(s) =


0, if |s| < j,
sgn s, if |s| ≥ j+ 1,
s− j sgn s, if j ≤ |s| ≤ j+ 1.

(5)

The following lemma, due to Boccardo and Gallouët [6], will be used in the following; it is a very useful result in nonlinear
elliptic equations with a right-hand side in L1(Ω).

Lemma 1. Let (uδ)δ be a family of measurable functions such that

(i) Tj(uδ) ∈ H1
0(Ω), for all j > 0, and

(ii) ∀δ > 0 and j > 0, ∃C > 0 (independent of j and δ) such that
∫
Ω
|∇Gj(uδ)|2 ≤ C.

Then (uδ)δ is bounded in W1,q
0 (Ω), for all q in the range 1 ≤ q < N/(N − 1).

Finally, we introduce the spaces

W1,∞
c (R) =

{
ϕ ∈ W1,∞(R), supp ϕ is compact

}
.

V = {φ ∈ H1
0(Ω)N A

S/2
1 (u2)∇φ ∈ L2(Ω)N×N}.

Functional spaces such as V , involving both data and the unknowns have been introduced in previous works. For instance,
in [9], it appears in a similar framework. In fact, for the solution u1 one may expect that u1 ∈ V .
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