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a b s t r a c t

An improved parallel hybrid bi-conjugate gradientmethod (IBiCGSTAB(2)method, in brief)
for solving large sparse linear systemswith nonsymmetric coefficient matrices is proposed
for distributed parallel environments. The method reduces five global synchronization
points to two by reconstructing the BiCGSTAB(2) method in [G.L.G. Sleijpen, H.A. van der
Vorst, Hybrid bi-conjugate gradient methods for CFD problems, in: M. Hafez, K. Oshima
(Eds.), Computational Fluid Dynamics Review 1995, John Wiley & Sons Ltd, Chichester,
1995, pp. 457–476] and the communication time required for the inner product can
be efficiently overlapped with useful computation. The cost is only slightly increased
computation time, which can be ignored, compared with the reduction of communication
time. Performance and isoefficiency analysis shows that the IBiCGSTAB(2) method has
better parallelism and scalability than the BiCGSTAB(2) method. Numerical experiments
show that the scalability can be improved by a factor greater than 2.5 and the improvement
in parallel communication performance approaches 60%.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Among iterative methods for large sparse systems, Krylov subspace methods are the most powerful. The conjugate
gradient (CG) method for solving symmetric positive definite linear systems, the GMRES method, BiCG method [9], QMR
method [3], BiCGSTAB method [14], BiCR method [11] and BiCRSTAB method [7] for solving nonsymmetric linear systems
and so on are all examples.
The basic time-consuming computational kernels of all Krylov subspace methods are usually [9]: inner products, vector

updates andmatrix-vectormultiplications. Inmany situations, especially whenmatrix operations are well structured, these
operations are suitable for implementation on vector and shared memory parallel computers. But for parallel distributed
memory machines, the matrices and vectors are distributed over the processors, so that even when matrix operations
can be implemented efficiently by parallel operation, we still cannot avoid the global communication required for inner
product computations, i.e. accumulation of data from all the processors to one, and broadcasting the result to each processor.
Vector updates are naturally parallel and, for large sparse matrices, matrix-vector multiplications can be implemented
with communication only between nearby processors. The bottleneck is usually due to inner products enforcing global
communication. These global communication costs become relatively more and more important when the number of
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parallel processors is increased and thus they have the potential to affect the scalability of the algorithm in a negative way.
A detailed discussion on the communication problem on distributed memory systems can be found in [12,13].
Three remedies can be used to solve the bottleneck which leads to performance degeneration. The first remedy is to

eliminate data relativity or reduce the number of global synchronization points, so that several inner products can be
computed and passed at the same time. The second is reconstructing the algorithm so that communication and computation
can be overlapped efficiently. The last is replacing the inner product computation by other computations which do not
require global communications. Of course, they can be used concurrently.
Recently, Bücker et al. [1] and Yang et al. [15] proposed a new parallel Quasi-Minimal Residual(QMR) method based

on a Lanczos process with coupled two-term recurrence. Sturler et al. [12] proposed how to reduce the effect of global
communication inGMRES(m) and CGmethods. Yang et al. [16–18] proposed the improved CGS, BiCG and BiCGSTABmethods
respectively. Chi et al. gave an improved CR algorithm [2]. Gu, Zuo and Liu et al. [6–8] proposed parallel versions of BiCR,
BiCRSTAB and QMRCGSTABmethods. All of these methods depend on the first two strategies. Gu, Liu andMo [4,5] proposed
a CG-typemethod without global inner products, i.e. multiple search direction conjugate gradient (MSD-CG) method. Based
on domain decomposition, the MSD-CG method replaced the inner product computations in the CG method by small size
linear systems. Therefore, it eliminates global inner products completely, which belongs to the last remedy.
In this paper, we give an improved parallel BiCGSTAB(2) method for distributed parallel environments based on the

first two remedies mentioned above. The IBiCGSTAB(2) method is reorganized without changing numerical stability and all
inner products per iteration are collected in two steps and independent (only one single global synchronization point), and
subsequently communication time required for inner products can be overlapped efficiently with computation time. The
cost is only slightly increased computation. Performance and isoefficiency analysis show that the IBiCGSTAB(2) method has
better parallelism and scalability than the BiCGSTAB(2) method. Especially, the parallel performance can be improved by a
factor greater than 2.5.
The paper is organized as follows. In Section 2, the design of the improved parallel BiCGSTAB(2) method is presented.

Performance and isoefficiency analysis of the IBiCGSTAB(2) and BiCGSTAB(2) methods are presented in Sections 3 and 4.
Numerical experiments carried out on a distributed memory parallel machine are reported in Section 5. Finally, we make
some concluding remarks in Section 6.

2. Algorithm design of IBiCGSTAB(2) method

Consider solving a large sparse nonsymmetric linear system

Ax = b (1)

on a parallel distributed memory machine, where A ∈ RN×N , x, b ∈ RN .
Assume that the matrix and vectors are distributed according to row or domain decomposition to each processor

of a distributed memory parallel processor, and have perfect load balance; the matrix is sparse and the matrix-vector
multiplications can be implemented with communication only between nearby processors. The important bottleneck for
Krylov subspace methods is usually due to inner products enforcing global communication.
For comparison, we give the BiCGSTAB(2) method for (1) discussed in [10], where x0 and r0 = b− Ax0 is the initial guess

and residual vector, respectively, such that rT0 r0 6= 0.

Algorithm 1. The BiCGSTAB(2) Method, [10]

1) Compute r0 = b− Ax0, r̂0 = r = r0, p = v = w = 0,
ρ1 = α = ω1 = ω2 = 1;

2) For i = 0, 2, 4, 6, . . ., until convergence, do
3) ρ0 = −ω2ρ1;

even BiCG step

4) ρ1 = (ri, r̂0); β = αρ1/ρ0; ρ0 = ρ1;
5) p = ri − β(p− ω1v − ω2w);
6) v = Ap;
7) γ = (v, r̂0); α = ρ0/γ ;
8) r = ri − αv;
9) s = Ar;
10) x = xi + αp;

odd BiCG step

11) ρ1 = (s, r̂0); β = αρ1/ρ0; ρ0 = ρ1;
12) v = s− βv;
13) w = Av;
14) γ = (w, r̂0);α = ρ0/γ
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