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Abstract

This paper considers the problem of defining a parameterization (chart) on the group of diffeomorphisms with compact support,
motivated primarily by a problem in image registration, where diffeomorphic warps are used to align images. Constructing a chart
on the diffeomorphism group will enable the quantitative analysis of these warps to discover the normal and abnormal variation of
structures in a population.

We construct a chart for particular choices of boundary conditions on the space on which the diffeomorphism acts, and for a
particular class of metrics on the diffeomorphism group, which define a class of diffeomorphic interpolating splines. The geodesic
equation is computed for this class of metrics, and we show how it can be solved in the spline representation. Furthermore,
we demonstrate that the spline representation generates submanifolds of the diffeomorphism group, and we study this mapping.
Explicit computational examples are included, showing how this chart can be constructed in practice, and that the use of the
geodesic distance allows better classification of variation than those obtained using just a Euclidean metric on the space of warps.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction and overview

There has been much interest in the group of volume-preserving diffeomorphisms since Arnold’s celebrated
discovery [2] that the Euler fluid equations describe geodesics on the group of volume-preserving (i.e. incompressible)
diffeomorphisms. This paper considers the construction of local charts on the group of all compactly-supported
diffeomorphisms and the chart extension to form a coordinate system or atlas. We will show that the Euler
equations for diffeomorphisms arise naturally from the construction of a right-invariant Riemannian metric on the
diffeomorphism group. These Euler equations appear in several different fields, coinciding with the Camassa-Holm
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wave equation in fluid dynamics for the H'! metric [13] and being used in two and three dimensions in the field of
image registration.

It is this second application that provides the principal motivation for our work. We provide computational examples
of how our methods can be used in Section 6, where we show that elements of the diffeomorphism group can
be approximated to arbitrary accuracy on pixellated images based on a relatively small number of knotpoints, and
Section 7 where we demonstrate that the relevant metric enables legal and illegal examples of 2D images of ventricles
to be reliably classified.

Image warping is concerned with applying non-linear warps to an image in order to make structures in the image
line up with corresponding structures in another (reference) image. There are a variety of applications, but the primary
one is in medical imaging, where it is hoped that aligning images will enable the automated diagnosis of disease
through analysis of the resultant deformation field. Under the assumption that registration between medical images
should define a bijective, continuous, and invertible mapping between all points in the images, suitable warps come
from some diffeomorphism group. Furthermore, in medical imaging the structures being warped are discrete, bounded
entities. This suggests that the image warps should also be discrete and bounded, and so we restrict ourselves to some
group of diffeomorphisms with compact support, G = Diffy(M). While there are places where such modelling
choices are unsuitable (for example, where additional structure such as a tumour is seen in just one of the images)
there are many other problems where they appear to be valid, such as degenerative brain diseases like Alzheimer’s.
For a general review of registration methods, and other applications, see [31], and for an overview of medical image
registration, see [28].

Much of the most relevant work to this paper comes under the rubric of Computational Anatomy (see [23] for an
overview), where the problem of inexact matching for landmarks, shapes and images is viewed as constructing orbits
from a template under diffeomorphic transformations. Following [9,29], the problem of finding the minimum-distance
image deformation under inexact matching is shown to have the same solution as the Euler—Lagrange equations, with
methods such as geodesic shooting [22] used to construct an approximation to the true diffeomorphism. This differs
from our approach where we consider only exact matching. In terms of our target application of analysing image
deformation fields, this means that we analyse the exact field, not some approximation to it. While it may be that in
the presence of noise the inexact matching provides a smoother deformation field, the derivation of the theory is far
clearer when exact matching is considered. We also derive and consider the metric on the whole of Diffy(M), rather
than the metric on sets of landmarks (which is induced by the full metric) — see Section 5 for further details.

Further, this paper considers solving for geodesics on the diffeomorphism group within a spline representation,
which is subtly but significantly different to the template matching approach of solving for geodesics on the space of
knotpoint parameters using the induced metric [30,11,23].

The secondary purpose of our paper is to introduce the mathematics of the diffeomorphism group to those whose
expertise is in the application of the methods in fields such as image registration. We therefore assume in the reader
only knowledge of some standard differential geometry and functional calculus.

1.1. Problem statement

We consider the diffeomorphism group G = Diff(M) of compactly-supported Sobolev H; -mappings,’ with
identity element e. This group is a smooth (C°) Hilbert space, but it is not a Lie group [25,10]. In general, while
these spaces are not Lie groups (group operations are not necessarily smooth between the same spaces except in the
limit as s tends to infinity), the diffeomorphism groups do have structures corresponding to the Lie algebras and group
exponential maps of Lie groups (see Section 2). This group exponential map is only continuous; there is no guarantee
that any diffeomorphism in a neighbourhood of the identity can be embedded into a flow of vector fields [15,10].

The group acts on a space M, of dimension n < 2s, which we will take to be a compact space with boundary
dM. Points on the boundary M do not move, since the diffeomorphisms have compact support. We take M to
be the closed unit ball B in R”. This simplifies some of the computations considerably, and fits well with the target
application — the study of diffeomorphic warps of images — as the image plane/volume can be scaled to lie wholly
within the unit ball.

1 Hg (M) is the space of functions f which vanish on the boundary 3. M (the meaning of the O subscript), and whose derivatives up to order s
are square-integrable functions on M.
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