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a b s t r a c t

In this paper, a cubic superconvergent finite volume element method based on optimal
stress points is presented for one-dimensional elliptic and parabolic equations. For elliptic
problem, it is proved that the method has optimal third order accuracy with respect to H1
norm and fourth order accuracy with respect to L2 norm. We also obtain that the scheme
has fourth order superconvergence for derivatives at optimal stress points. For parabolic
problem, the scheme is given and error estimate is obtainedwith respect to L2 norm. Finally,
numerical examples are provided to show the effectiveness of the method.
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1. Introduction

Finite volume element methods (FVEMs) [1–3], which are also called Petrov–Galerkin finite element methods, are the
special cases of generalized difference methods (GDMs) [3–6]. The methods discretize the integral form of conservation law
of differential equation by choosing linear or bilinear finite element space as trial space. They have the simplicity of finite
differencemethods and the accuracy of finite elementmethods and have beenwidely used in computational fluidmechanics
because they keep the conservation law ofmass or energy. In recent years, some literatures discussed finite volume element
methods from different points of view. Cai and Steve Mccormick [1] presented finite volume element method for diffusion
equations on composite grids and provided the error estimates which were relatively complicated. Afterwards, they gave
simple theoretical analysis for diffusion equations on general triangulations. However, it was constrained to special choosing
of control volumes. Li Qian and his colleagues [7,8] also had lots of contributions to the studies of finite volume element
methods.
The development of efficient higher order finite volume methods is important both in theories and for various applica-

tions. Plexousakis and Zouraris [9] derived a class of high order finite volume methods for solving one-dimensional elliptic
equations. Cai, Douglas and Park [10] constructed a high order finite volume elementmethod bymixed variational principle.
They presented a systematic way to derive high order finite volumemethod over rectangularmeshes. Yang [11] constructed
and analyzed a second order finite volume element scheme on general quadrilateral meshes for two-dimensional elliptic
problem. In [12], Yang, Liu and Chen further developed the second order finite volume scheme with affine quadratic bases
on three-dimensional right quadrangular prism grids for elliptic boundary problems. More work can be seen in References
[13–23]. Xu and Zou [17] developed an abstract framework to give a unified presentation of finite volume methods and a
unified study of the convergence theory of finite volume methods. Shu, Yu and Huang [20] presented a symmetric finite
volume element scheme on quadrilateral grids and Wang [21] presented an alternating direction finite volume element
method by perturbing the differential equations. By modifying trial function space, Wang [22,23] proposed some kinds of
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high order finite volume schemes for one-dimensional elliptic and parabolic differential equations. Also many alternative
finite volume schemes, e.g.WENO [24], ENO and FVswith embedded analytical functions [25] are constructed to obtain high
order schemes.
Essentially, both finite element and finite volume element aremethods based on interpolations. By approximation theory,

we know that the numerical derivatives have only rth order accuracy for rth order interpolating polynomials in general. But
this fact does not exclude the possibility of higher order accuracy of approximation for derivatives at some special points,
which are called optimal stress points. By now the superconvergence theory of finite elements has clarified the distribution
of the interpolation optimal stress points for some most in use finite elements [26,27]. For finite volume element methods,
Li, Chen and Wu [3] gave the analysis with H1 norm and L2 norm for linear, quadratic and cubic Hermite finite volume
elementmethods and discussed the superconvergence of linear and cubic element difference schemes.We know, for elliptic
problem, the key step of finite volume element method is to discretize the normal derivatives of unknown function along
the boundaries of control volumes. If the approximation order of these derivatives is higher, finite volume elementmethods
may get higher accuracy. Guo and Wang [28] presented a high accuracy finite volume element method based on quadratic
optimal stress points for two-point boundary value problem. In this paper, we will construct cubic superconvergent finite
volume element method based on cubic optimal stress points. Our studies are motivated by the importance to obtain
superconvergent finite volume element schemes, which can keep the local conversation, high order accuracy and get the
superconvergence for derivatives at optimal stress points.
LetΠhu be the interpolating function over interval [−h, h] associated with four equidistant nodes (−h, u(−h)), (−h/3,

u(−h/3)), (h/3, u(h/3)), (h, u(h)), then
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where ξ = x/h. By Taylor’s expansion, we have
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Hence, when x0 = ±
√
5h/3 or x0 = 0, (Πhu)′(x0) = u′(x0)+O(h4). Therefore, the points {±

√
5
3 , 0} are optimal stress points

of cubic Lagrange interpolation on the reference element [−1, 1] when the interpolating nodes are equally distributed.
The remainder of paper is organized as follows. In Section 2, elliptic problem is discussed and error estimate is given.

Superconvergence for derivatives is also included. In the following section, we extend the above ideas to one-dimensional
parabolic problem. Finally, in Section 4, numerical examples are provided to show the effectiveness and adaption of the
method.
Throughout this paper, we use C to denote a generic positive constant independent of discretization parameters.

2. Cubic superconvergent finite volume element method for one-dimensional elliptic equation

Consider the following one-dimensional elliptic equation with boundary values of mixed type on I = [a, b]

−
d
dx

(
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)
+ q(x)u(x) = f (x), x ∈ (a, b), (2.1a)

u(a) = 0, p(b)
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+ αu(b) = g, (2.1b)

where p, q, f are given functions on [a, b], and p ∈ C1[a, b], q, f ∈ C[a, b], p(x) ≥ p0 > 0, q(x) ≥ 0, α ≥ 0, g are
constants. First, give a partition Ih on I = [a, b] and the elements are [x3(i−1), x3i] (i = 1, 2, . . . , n). Then we divide each
element into three equal parts with step size hi and the nodes are x3i−3 < x3i−2 < x3i−1 < x3i. Denote by h = max1≤i≤n hi,
x3i−(3+√5)/2 = x3i− (3+
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