
Journal of Computational and Applied Mathematics 233 (2010) 2387–2394

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

A variable step implicit block multistep method for solving
first-order ODEs
S. Mehrkanoon ∗, Z.A. Majid, M. Suleiman
Department of Mathematics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

a r t i c l e i n f o

Article history:
Received 22 June 2009
Received in revised form 17 October 2009

MSC:
65L05
65L06

Keywords:
Block method
Variable step size
Ordinary differential equations

a b s t r a c t

A new four-point implicit block multistep method is developed for solving systems of
first-order ordinary differential equations with variable step size. The method computes
the numerical solution at four equally spaced points simultaneously. The stability
of the proposed method is investigated. The Gauss–Seidel approach is used for the
implementation of the proposed method in the PE(CE)m mode. The method is presented
in a simple form of Adams type and all coefficients are stored in the code in order to avoid
the calculation of divided difference and integration coefficients. Numerical examples are
given to illustrate the efficiency of the proposed method.
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1. Introduction

In many fields of application in, e.g., science and engineering one can find equations of the form

Y ′ = F(x, Y ) Y (a) = Y0, a ≤ x ≤ b (1)

where a and b are finite and Y ′ = [y′1, y
′

2, . . . , y
′
n]
T , Y = [y1, y2, . . . , yn]T and F = [f1, f2, . . . , fn]T . Most of the existing

methods for solving ODEs like that in (1) will only approximate the numerical solutions at one point, sequentially. Thus,
developing faster methods which can give faster solutions to the problem are needed.
Block methods for the numerical solution of first-order ODEs have been proposed by several authors, such as [1–4].

Among the earliest researchers investigating the block method, Houwen and Sommeijer [5] have developed block
Runge–Kutta methods, Omar [6] introduced a block method based on Adams formulas for solving higher order ODEs and
Majid [7] proposed a variable step size and order Adams type blockmethod. The advantage of a blockmethod is that in each
application, the solution will be approximated at more than one point. The number of points depends on the structure of
the block method. Therefore, applying these methods can give faster solutions to the problem and also can be managed to
produce a desired accuracy.
The authors in [8,9] have introduced a four-point diagonally and fully implicit blockmethod in which at each application

of the method, the solution will be approximated at four points simultaneously. The Jacobi iteration was used for the
implementation of the methods in [8,9].
The Gauss–Seidel approach for the implementation of the two-point block one-step method was discussed in [10]. In

this paper, the same approach will be considered for the four-point implicit block multistep method. The proposed block
method will approximate the solutions at four points simultaneously in each step, using variable step size.
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Fig. 1. Four-point implicit block multistep method.

The method is derived by using the Lagrange interpolation polynomial and the closest point in the interval will be
considered for obtaining the corrector and predictor formula. Therefore, the approximated values of yn+1, yn+2, yn+3 and
yn+4 are obtained by integrating (1) over the intervals [xn, xn+1], [xn+1, xn+2], [xn+2, xn+3] and [xn+3, xn+4] respectively.

2. Derivation of the four-point implicit block multistep method

In Fig. 1, the solutions for yn+1, yn+2, yn+3 and yn+4 with step size h at the points xn+1, xn+2, xn+3 and xn+4 respectively
are approximated simultaneously using five back values at the points xn, xn−1, xn−2, xn−3 and xn−4 of the previous four steps
with step size rh. The set of points {xn−7, . . . , xn} are used for deriving the predictor formula and the order is 1 less than the
order of the corrector. The method will compute the solution at four points concurrently using four earlier steps.
The interpolation points involved for obtaining the corrector formulas for yn+1, yn+2, yn+3 and yn+4 are {(xn−4, fn−4), . . . ,

(xn+4, fn+4)}. The first point yn+1 is derived by integrating (1) as follows:∫ xn+1

xn
y′dx =

∫ xn+1

xn
f (x, y) dx.

Then

y(xn+1) = y(xn)+
∫ xn+1

xn
f (x, y) dx. (2)

The function f (x, y) in (2) is approximated by the Lagrange polynomial which interpolates the set of points mentioned.
Evaluating the integral usingMATHEMATICAwill give the formula for the first point in terms of r as follows.
The first point:

yn+1 = yn + h
[

17010r3 + 13530r2 + 4005r + 413
241920r4(r + 1)(2r + 1)(4r + 1)(4r + 3)

fn−4 −
6480r3 + 4920r2 + 1335r + 118

6480r4(r + 1)(3r + 1)(3r + 2)(3r + 4)
fn−3

+
34020r3 + 23370r2 + 5340r + 413
20160r4(r + 1)(r + 2)(2r + 1)(2r + 3)

fn−2 −
136080r3 + 63960r2 + 12015r + 826
15120r4(r + 1)(r + 2)(r + 3)(r + 4)

fn−1

+
253008r4 + 141750r3 + 43050r2 + 6675r + 413

725760r4
fn +

325584r4 + 394800r3 + 190260r2 + 41010r + 3275
15120(r + 1)(2r + 1)(3r + 1)(4r + 1)

× fn+1 −
44352r4 + 43050r3 + 17220r2 + 3165r + 220

20160(r + 1)(r + 2)(2r + 1)(3r + 2)
fn+2 +

7632r4 + 7200r3 + 2820r2 + 510r + 35
6480(r + 1)(r + 3)(2r + 3)(4r + 3)

fn+3

−
19152r4 + 17850r3 + 6930r2 + 1245r + 85
241920(r + 1)(r + 2)(r + 4)(3r + 4)

fn+4

]
. (3)

The approximate value for the second point, yn+2, is derived by integrating (1) over the interval [xn+1, xn+2].
Approximating f using the Lagrange polynomial and lastly evaluating the integral using MATHEMATICA, the formula for
the second point in terms of r is obtained as follows.
The second point:

yn+2 = yn+1 + h
[
−

6930r3 + 18810r2 + 15525r + 3997
241920r4(r + 1)(2r + 1)(4r + 1)(4r + 3)

fn−4 +
2640r3 + 6840r2 + 5175r + 1142

6480r4(r + 1)(3r + 1)(3r + 2)(3r + 4)
fn−3

−
13860r3 + 32490r2 + 20700r + 3997
20160r4(r + 1)(r + 2)(2r + 1)(2r + 3)

fn−2 +
55440r3 + 88920r2 + 46575r + 7994
15120r4(r + 1)(r + 2)(r + 3)(r + 4)

fn−1

−
19152r4 + 57750r3 + 59850r2 + 25875r + 3997

725760r4
fn

+
174384r4 + 478800r3 + 454860r2 + 181710r + 26165

15120(r + 1)(2r + 1)(3r + 1)(4r + 1)
fn+1

+
76608r4 + 261450r3 + 306180r2 + 149085r + 25820

20160(r + 1)(r + 2)(2r + 1)(3r + 2)
fn+2
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