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a b s t r a c t

This is a brief account on some results and methods of the asymptotic theory dealing with
the entropy of orthogonal polynomials for large degree. This study is motivated primarily
by quantum mechanics, where the wave functions and the densities of the states of
solvable quantum-mechanical systems are expressed bymeans of orthogonal polynomials.
Moreover, the uncertainty principle, lying in the ground of quantum mechanics, is best
formulated by means of position and momentum entropies. In this sense, the behavior for
large values of the degree is intimately connected with the information characteristics of
high energy states. But the entropy functionals and their behavior have an independent
interest for the theory of orthogonal polynomials. We describe some results obtained in
the last 15 years, as well as sketch the ideas behind their proofs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Given a probability density ρ, the expression− ln(ρ) is known as the surprise level function, whose mean value (average
lack of information or uncertainty) is identified with the Shannon entropy of ρ [1]. In particular, if {ρj}nj=1 is a discrete
probability distribution (ρj ≥ 0,

∑
ρj = 1), the information entropy functional

sn := −
n∑
j=1

ρj ln(ρj) (1)

measures, in common perception, the uncertainty associated with this probability distribution. Two extremal cases are

Uniform distribution: {ρj}nj=1 =
{
1
n
, . . . ,

1
n

}
⇒ sn = ln(n),

Dirac delta: {ρj}nj=1 = {0, . . . , 0, 1, 0, . . . , 0} ⇒ sn = 0.

Jensen’s inequality applied to (1) gives

0 ≤ sn ≤ ln(n),

showing that the uniform distribution, having the most uncertain outcome, has maximal entropy, while the deterministic
event has the minimal one.
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If ρ is a continuous probability distribution,

ρ(x) > 0, x ∈ R,
∫

R
ρ(x)dx = 1,

we can define by analogy the information entropy [1]

Sρ = −
∫
ρ(x) ln ρ(x)dx, (2)

known also as the Boltzmann, Boltzmann–Shannon or differential entropy, that characterizes the localization of the density of
the distribution. The measures of information (1) and (2), although formally similar, have different properties. In particular,
if ρ is a continuous probability distribution on [a, b] and we introduce a discrete distribution

ρj =

∫ a+jh

a+(j−1)h
ρ(x)dx, j = 1, . . . , n, h = (b− a)/n,

then Sρ ≈ sρ + ln(h), showing in particular that Sρ is unbounded. In this sense, it is more convenient to consider an entropy
functional for two (probability) measures, µ and ν,

K(µ, ν) =

−
∫
ln
(
dν
dµ

)
dν, if ν is µ-a.c.,

−∞, otherwise.
(3)

This is theKullback–Leibler information, also knownas the relative ormutual entropy,whichmeasures the ‘‘distance’’ between
ν and µ. Obviously, if ν is µ-a.c., we can also rewrite it as

K(µ, ν) = −

∫
dν
dµ
ln
(
dν
dµ

)
dµ.

There is no a priori preferred notion of information measure in physical applications, but a relevant role played by the
Boltzmann–Shannon entropy in quantum mechanics (and in particular, in the modern density functional theory [2]) is
motivated in part by the entropic formulation of the uncertainty principle. Consider for instance a single particle system inD
dimensions. For any quantummechanical state the distribution density is ρ(x) := |Ψ (x)|2, whereΨ (x) is the corresponding
wave function or physical solution of the associated Schrodinger equation. If γ is the distribution density in the momentum
space, then the Heisenberg’s uncertainty principle for the quantum mechanical system is a consequence of the following
inequality (see [3,4]):

Sρ + Sγ > D(1+ lnπ).

For the fundamental quantummechanical systems (harmonic oscillator, hydrogen atom) the relevant component of the
probability density of physical states are expressed by means of orthogonal polynomials (Gegenbauer, Laguerre, Hermite).
This brought up the study of the entropy functionals for orthogonal polynomials (see [5] as well as the survey [6]).
Let µ be a positive unit Borel measure on R and let

pn(x) = κn
n∏
j=1

(
x− ζ (n)j

)
, κn > 0, n ∈ N0 := N ∪ {0}, (4)

denote the corresponding sequence of orthonormal polynomials such that∫
pn(x)pm(x)dµ(x) = δmn, m, n ∈ N0.

Then we can define the sequence of probability measures νn, absolutely continuous with respect to µ, given by

dνn(x) = p2n(x)dµ(x), n ∈ N0, (5)

(note that ν0 = µ). These measures are usually related with the quantum-mechanical probability distribution of physical
states, and are standard objects of study in the analytic theory of orthogonal polynomials. As it was shown in [7], νn is
associated with the behavior of the ratio pn+1/pn as n→∞.
The relative entropy

En := K(µ, νn) = −

∫
p2n(x) ln

(
p2n(x)

)
dµ(x) (6)

is called the (continuous) information entropy of orthogonal polynomials {pn}. Obviously, this is not the only way to define
an entropy associated with orthogonal polynomials (4). For instance, for j ∈ {1, . . . , n}, let

ψi = `n(ζ
(n)
j ) p2i−1(ζ

(n)
j ), i = 1, . . . , n,
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